differentiate
f(x) = 2 + |x|2/3
Solution;
f(x)=2+|x|"^{\\frac 2 3}"
Rewrite |x| as "\\sqrt{x^2}"
f'(x)="\\frac{d(2)}{dx}" +"\\frac{d(\\sqrt{x^2})^{\\frac 23}}{dx}"
Simplify;
f'(x)="\\frac{d(2)}{dx}+\\frac{d(x^2)^{\\frac13}}{dx}"
We have;
"\\frac{d(2)}{dx}=0"
Using chain rule;
"\\frac{d({x^2})^{\\frac13}}{dx}" = "\\frac{d(u)^{\\frac13}}{du}\u00d7\\frac{du}{dx}"
Where u=x2
"\\frac{d(u)^{\\frac13}}{du}" ="\\frac13\u00d7u^{\\frac13-1}" ="\\frac{1}{3u^{\\frac23}}"
"\\frac{du}{dx}"=2x
f'="0+\\frac{2x}{3\\sqrt[3]{x^4}}"
Since it's cube cube root of "x^4",we don't require an absolute value of x ,since x can be positive or negative. So we simplify as;
f'(x)="\\frac{2}{3\\sqrt[3]{x}}"
Comments
Leave a comment