differentiate
f(x) = 2 + |x|2/3
Solution;
f(x)=2+|x|23^{\frac 2 3}32
Rewrite |x| as x2\sqrt{x^2}x2
f'(x)=d(2)dx\frac{d(2)}{dx}dxd(2) +d(x2)23dx\frac{d(\sqrt{x^2})^{\frac 23}}{dx}dxd(x2)32
Simplify;
f'(x)=d(2)dx+d(x2)13dx\frac{d(2)}{dx}+\frac{d(x^2)^{\frac13}}{dx}dxd(2)+dxd(x2)31
We have;
d(2)dx=0\frac{d(2)}{dx}=0dxd(2)=0
Using chain rule;
d(x2)13dx\frac{d({x^2})^{\frac13}}{dx}dxd(x2)31 = d(u)13du×dudx\frac{d(u)^{\frac13}}{du}×\frac{du}{dx}dud(u)31×dxdu
Where u=x2
d(u)13du\frac{d(u)^{\frac13}}{du}dud(u)31 =13×u13−1\frac13×u^{\frac13-1}31×u31−1 =13u23\frac{1}{3u^{\frac23}}3u321
dudx\frac{du}{dx}dxdu=2x
f'=0+2x3x430+\frac{2x}{3\sqrt[3]{x^4}}0+33x42x
Since it's cube cube root of x4x^4x4,we don't require an absolute value of x ,since x can be positive or negative. So we simplify as;
f'(x)=23x3\frac{2}{3\sqrt[3]{x}}33x2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments