Suppose "x\\not=0."
"0\\leq|\\dfrac{\\sin(e^x)}{x}|\\leq \\dfrac{1}{|x|}, x\\in\\R, x\\not=0"
"\\lim\\limits_{x\\to\\infin}\\dfrac{1}{|x|}=0" Then by the Squeeze Theorem
"\\lim\\limits_{x\\to\\infin}|\\dfrac{\\sin(e^x)}{x}|=0"
"0\\leq|\\dfrac{\\sin(e^x)}{\\sqrt{x^2+2}}|\\leq |\\dfrac{\\sin(e^x)}{x}|, x\\in\\R, x\\not=0"
Then by the Squeeze Theorem
"\\lim\\limits_{x\\to\\infin}|\\dfrac{\\sin(e^x)}{\\sqrt{x^2+2}}|=0" Therefore
"\\lim\\limits_{x\\to\\infin}\\dfrac{\\sin(e^x)}{\\sqrt{x^2+2}}=0"
Comments
Leave a comment