using the knowledge of odd and even functions, find the Fourier series decomposition of
f(x)={2x,-π<x<π
{f(x+2π)
For the odd function, the Fourier series is called the Fourier Sine series and is given by
where the Fourier coefficients are
"b_n=\\dfrac{2}{\\pi}\\displaystyle\\int_{0}^{\\pi}2x\\sin nxdx"
"\\int 2x\\sin nx dx"
"\\int u dv=uv-\\int v du"
"u=2x, du=2dx"
"dv=\\sin nxdx, v=\\int \\sin nx dx=-\\dfrac{1}{n}\\cos nx"
"\\int 2x\\sin nx dx=-\\dfrac{2x}{n}\\cos nx+\\int \\dfrac{2}{n}\\cos nxdx"
"=-\\dfrac{2x}{n}\\cos nx+\\dfrac{2}{n^2}\\sin nx+C"
"b_n=\\dfrac{2}{\\pi}\\bigg[-\\dfrac{2x}{n}\\cos nx+\\dfrac{2}{n^2}\\sin nx\\bigg]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}"
"=-\\dfrac{4}{n}\\cos \\pi n=\\dfrac{(-1)^{n+1}4}{n}"
"f(x)=\\displaystyle\\sum_{n=1}^{\\infin}\\dfrac{(-1)^{n+1}4}{n}\\sin nx"
Comments
Leave a comment