For the odd function, the Fourier series is called the Fourier Sine series and is given by
fodd(x)=n=1∑∞bnsinnx where the Fourier coefficients are
bn=π2∫0πf(x)sinnxdx,n=1,2,3,...
bn=π2∫0π2xsinnxdx
∫2xsinnxdx
∫udv=uv−∫vdu
u=2x,du=2dx
dv=sinnxdx,v=∫sinnxdx=−n1cosnx
∫2xsinnxdx=−n2xcosnx+∫n2cosnxdx
=−n2xcosnx+n22sinnx+C
bn=π2[−n2xcosnx+n22sinnx]π0
=−n4cosπn=n(−1)n+14
f(x)=n=1∑∞n(−1)n+14sinnx
Comments
Leave a comment