Question #218924

Let R be the region in the first quadrant bounded by the lines y= -2x+4,y= -2x+7,y=x-2 and y=x+1.By making the substitutions u=2x+y,v=x-y and integrating over a suitable region in the u-v plane. Evaluate the integral ∫∫(2x2-xy-y2)dxdy


1
Expert's answer
2021-07-21T16:56:45-0400


The sides of parallelogram are 2x+y=4,  2x+y=7,  xy=2,  xy=12x+y=4,\ \ 2x+y=7,\ \ x-y=2,\ \ x-y=-1 .

By making the substitutions u=2x+yu=2x+y , v=xyv=x-y , we get the limits on the integral 4u74\leq u\leq 7 and 1v2-1\leq v\leq 2 .

Now, solve for xx and yy :

u+v=(2x+y)+(xy)=3xu+v=(2x+y)+(x-y)=3x ,   x=u+v3\ \ x=\frac{u+v}{3}

u2v=(2x+y)(2xy)=3yu-2v=(2x+y)-(2x-y)=3y ,  y=u2v3\ y=\frac{u-2v}{3} .

Compute the Jacobian:

J(u,v)=xuxvyuyv=13131323=2919=13J(u,v)=\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}=\begin{vmatrix} \tfrac{1}{3} & \tfrac{1}{3} \\ \tfrac{1}{3} & -\tfrac{2}{3} \end{vmatrix}=-\frac{2}{9}-\frac{1}{9}=-\frac{1}{3} and J(u,v)=13\big|J(u,v)\big|=\frac{1}{3}

The original integrand becomes 2x2xyy2=2(u+v)2(u+v)(u2v)(u2v)29=uv2x^2-xy-y^2=\frac{2(u+v)^2-(u+v)(u-2v)-(u-2v)^2 }{9}=uv .

The double integral is R(2x2xyy2)dx dy=1247uv13 du dv=1312vdv47u du=13v2212u2247=1332332=334=8.25\iint \limits_R(2x^2-xy-y^2)dx\ dy=\int\limits _{-1}^{2}\int\limits_{4}^7uv \cdot \frac{1}{3}\ du \ dv =\frac{1}{3} \int\limits _{-1}^{2}v dv \cdot \int\limits_{4}^7u\ du =\frac{1}{3}\cdot \frac{v^2}{2}\bigg|^2_{-1} \cdot \frac{u^2}{2}\bigg|_4^7=\frac{1}{3}\cdot \frac{3}{2}\cdot \frac{33}{2}=\frac{33}{4}=8.25


Answer: R(2x2xyy2)dx dy=8.25\iint \limits_R(2x^2-xy-y^2)dx\ dy=8.25


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS