Let R be the region in the first quadrant bounded by the lines y= -2x+4,y= -2x+7,y=x-2 and y=x+1.By making the substitutions u=2x+y,v=x-y and integrating over a suitable region in the u-v plane. Evaluate the integral ∫∫(2x2-xy-y2)dxdy
1
Expert's answer
2021-07-21T16:56:45-0400
The sides of parallelogram are 2x+y=4,2x+y=7,x−y=2,x−y=−1 .
By making the substitutions u=2x+y , v=x−y , we get the limits on the integral 4≤u≤7 and −1≤v≤2 .
Now, solve for x and y :
u+v=(2x+y)+(x−y)=3x , x=3u+v
u−2v=(2x+y)−(2x−y)=3y , y=3u−2v .
Compute the Jacobian:
J(u,v)=∣∣∂u∂x∂u∂y∂v∂x∂v∂y∣∣=∣∣313131−32∣∣=−92−91=−31 and ∣∣J(u,v)∣∣=31
The original integrand becomes 2x2−xy−y2=92(u+v)2−(u+v)(u−2v)−(u−2v)2=uv .
The double integral is R∬(2x2−xy−y2)dxdy=−1∫24∫7uv⋅31dudv=31−1∫2vdv⋅4∫7udu=31⋅2v2∣∣−12⋅2u2∣∣47=31⋅23⋅233=433=8.25
Comments