Let R be the region in the first quadrant bounded by the lines y= -2x+4,y= -2x+7,y=x-2 and y=x+1.By making the substitutions u=2x+y,v=x-y and integrating over a suitable region in the u-v plane. Evaluate the integral ∫∫(2x2-xy-y2)dxdy
The sides of parallelogram are "2x+y=4,\\ \\ 2x+y=7,\\ \\ x-y=2,\\ \\ x-y=-1" .
By making the substitutions "u=2x+y" , "v=x-y" , we get the limits on the integral "4\\leq u\\leq 7" and "-1\\leq v\\leq 2" .
Now, solve for "x" and "y" :
"u+v=(2x+y)+(x-y)=3x" , "\\ \\ x=\\frac{u+v}{3}"
"u-2v=(2x+y)-(2x-y)=3y" , "\\ y=\\frac{u-2v}{3}" .
Compute the Jacobian:
"J(u,v)=\\begin{vmatrix}\n \\frac{\\partial x}{\\partial u} & \\frac{\\partial x}{\\partial v} \\\\\n \\frac{\\partial y}{\\partial u} & \\frac{\\partial y}{\\partial v}\n\\end{vmatrix}=\\begin{vmatrix}\n \\tfrac{1}{3} & \\tfrac{1}{3} \\\\\n \\tfrac{1}{3} & -\\tfrac{2}{3}\n\\end{vmatrix}=-\\frac{2}{9}-\\frac{1}{9}=-\\frac{1}{3}" and "\\big|J(u,v)\\big|=\\frac{1}{3}"
The original integrand becomes "2x^2-xy-y^2=\\frac{2(u+v)^2-(u+v)(u-2v)-(u-2v)^2\n}{9}=uv" .
The double integral is "\\iint \\limits_R(2x^2-xy-y^2)dx\\ dy=\\int\\limits _{-1}^{2}\\int\\limits_{4}^7uv \\cdot \\frac{1}{3}\\ du \\ dv =\\frac{1}{3} \\int\\limits _{-1}^{2}v dv \\cdot \\int\\limits_{4}^7u\\ du =\\frac{1}{3}\\cdot \\frac{v^2}{2}\\bigg|^2_{-1} \\cdot \\frac{u^2}{2}\\bigg|_4^7=\\frac{1}{3}\\cdot \\frac{3}{2}\\cdot \\frac{33}{2}=\\frac{33}{4}=8.25"
Answer: "\\iint \\limits_R(2x^2-xy-y^2)dx\\ dy=8.25"
Comments
Leave a comment