Answer to Question #218957 in Calculus for anto

Question #218957

Find the maclaurin series expansion for y=(8+ex)1/2 in ascending powers of x upto and including the term in x3 hence estimate (8+e0.54)1/2 to three decimal places


1
Expert's answer
2021-07-27T16:20:58-0400
f(x)=(8+ex)1/2f(x)=(8+e^x)^{1/2}

f(0)=(8+e0)1/2=3f(0)=(8+e^0)^{1/2}=3

f(x)=12ex(8+ex)1/2f'(x)=\dfrac{1}{2}e^x(8+e^x)^{-1/2}

f(0)=16f'(0)=\dfrac{1}{6}

f(x)=12ex(8+ex)1/214e2x(8+ex)3/2f''(x)=\dfrac{1}{2}e^x(8+e^x)^{-1/2}-\dfrac{1}{4}e^{2x}(8+e^x)^{-3/2}

f(0)=161108=17108f''(0)=\dfrac{1}{6}-\dfrac{1}{108}=\dfrac{17}{108}

f(x)=12ex(8+ex)1/214e2x(8+ex)3/2f'''(x)=\dfrac{1}{2}e^x(8+e^x)^{-1/2}-\dfrac{1}{4}e^{2x}(8+e^x)^{-3/2}

12e2x(8+ex)3/2+38e2x(8+ex)5/2-\dfrac{1}{2}e^{2x}(8+e^x)^{-3/2}+\dfrac{3}{8}e^{2x}(8+e^x)^{-5/2}


f(0)=161108154+1648=91648f'''(0)=\dfrac{1}{6}-\dfrac{1}{108}-\dfrac{1}{54}+\dfrac{1}{648}=\dfrac{91}{648}

f(x)=3+16x+17216x2+913888x3+O(x4)f(x)=3+\dfrac{1}{6}x+\dfrac{17}{216}x^2+\dfrac{91}{3888}x^3+O(x^4)

(8+e0.54)1/23+16(0.54)+17216(0.54)2(8+e^{0.54})^{1/2}\approx3+\dfrac{1}{6}(0.54)+\dfrac{17}{216}(0.54)^2

+913888(0.54)33.117+\dfrac{91}{3888}(0.54)^3\approx3.117


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment