Find the maclaurin series expansion for y=(8+ex)1/2 in ascending powers of x upto and including the term in x3 hence estimate (8+e0.54)1/2 to three decimal places
"f(0)=(8+e^0)^{1\/2}=3"
"f'(x)=\\dfrac{1}{2}e^x(8+e^x)^{-1\/2}"
"f'(0)=\\dfrac{1}{6}"
"f''(x)=\\dfrac{1}{2}e^x(8+e^x)^{-1\/2}-\\dfrac{1}{4}e^{2x}(8+e^x)^{-3\/2}"
"f''(0)=\\dfrac{1}{6}-\\dfrac{1}{108}=\\dfrac{17}{108}"
"f'''(x)=\\dfrac{1}{2}e^x(8+e^x)^{-1\/2}-\\dfrac{1}{4}e^{2x}(8+e^x)^{-3\/2}"
"-\\dfrac{1}{2}e^{2x}(8+e^x)^{-3\/2}+\\dfrac{3}{8}e^{2x}(8+e^x)^{-5\/2}"
"f(x)=3+\\dfrac{1}{6}x+\\dfrac{17}{216}x^2+\\dfrac{91}{3888}x^3+O(x^4)"
"(8+e^{0.54})^{1\/2}\\approx3+\\dfrac{1}{6}(0.54)+\\dfrac{17}{216}(0.54)^2"
"+\\dfrac{91}{3888}(0.54)^3\\approx3.117"
Comments
Leave a comment