Evaluate the definite intergral ∫\int∫01 18e3x+1dx (round to an interger).
1. 322
2. 311
3. 932
4. 965
Let,
3x+1=t3x+1=t3x+1=t
differentiating above equation with respect to x
3dx=dt3dx=dt3dx=dt
dx=dt3dx=\dfrac{dt}{3}dx=3dt
When x=0; t=1x=0;\space t=1x=0; t=1
x=1; t=4x=1;\space t=4x=1; t=4
∫0118e3x+1dx∫_0^1 18e^{3x+1}dx∫0118e3x+1dx
Substituting (3x+1=t)(3x+1=t)(3x+1=t) in above problem and changing limits of integration
=∫1418etdt3= ∫_1^4 \dfrac{18e^{t}dt}{3}=∫14318etdt
=6∫14etdt=6∫_1^4 e^{t}dt=6∫14etdt
=6∣et∣14=6 |e^{t}|_1^4=6∣et∣14
=6(e4−e)=6(e^4-e)=6(e4−e)
=311.27≈311=311.27\approx311=311.27≈311
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment