Answer to Question #212551 in Calculus for Akhona Klanisi

Question #212551

Evaluate the definite intergral \int01 18e3x+1dx (round to an interger).

1.         322

2.         311

3.         932

4.             965


1
Expert's answer
2021-07-25T11:06:54-0400

Let,

3x+1=t3x+1=t

differentiating above equation with respect to x

3dx=dt3dx=dt

dx=dt3dx=\dfrac{dt}{3}


When x=0; t=1x=0;\space t=1

x=1; t=4x=1;\space t=4


0118e3x+1dx∫_0^1 18e^{3x+1}dx

Substituting (3x+1=t)(3x+1=t) in above problem and changing limits of integration

=1418etdt3= ∫_1^4 \dfrac{18e^{t}dt}{3}

=614etdt=6∫_1^4 e^{t}dt

=6et14=6 |e^{t}|_1^4

=6(e4e)=6(e^4-e)

=311.27311=311.27\approx311


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment