Answer to Question #212324 in Calculus for Vikas

Question #212324

9.a) Check whether the series sum_(m=1)^(oo)(n^(2)x^(5))/(n^(4)+x^(3)) x in 0 alpha is uniformly convergent or not where alpha in R^(+).


1
Expert's answer
2021-07-01T10:59:19-0400

ANSWER. The series n=1n2x5 n4+x3\sum _{ n=1 }^{ \infty }{ \frac { { n }^{ 2 }{ x }^{ 5 }\ }{ { n }^{ 4 }+{ x }^{ 3 } } } is uniformly convergent in [0,α]\left[ 0,\alpha \right] .

EXPLANATION. We use Weierstrass M-Test to prove this

Since x[0,α]x\in \left[ 0,\alpha \right], then

0n2x5n4+x3n2 α5 n40\le \frac { { n }^{ 2 }{ x }^{ 5 }\quad }{ { n }^{ 4 }+{ x }^{ 3 } } \le \frac { { n }^{ 2 }{ \ \alpha }^{ 5 }\ }{ { n }^{ 4 }\quad } .

Denote fn(x)=n2x5 n4+x3, Mn= α5n2{ f }_{ n }(x)=\frac { { n }^{ 2 }{ x }^{ 5 }\ }{ { n }^{ 4 }+{ x }^{ 3 } } ,\ { M }_{ n }=\frac { { \ \alpha }^{ 5 } }{ { n }^{ 2 } } . We have fn(x)=fn(x)Mn\left| { f }_{ n }(x) \right| ={ f }_{ n }(x)\le { M }_{ n } and the series n=1Mn =α5n=11n2\sum _{ n=1 }^{ \infty }{ { M }_{ n }\ } ={ \alpha }^{ 5 }\sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 } } } converges (it is p-series , p=2). So, by the Weierstrass M-Test the series n=1fn(x)=n=1n2x5 n4+x3\sum _{ n=1 }^{ \infty }{ { f }_{ n }(x)= } \sum _{ n=1 }^{ \infty }{ \frac { { n }^{ 2 }{ x }^{ 5 }\ }{ { n }^{ 4 }+{ x }^{ 3 } } } converges uniformly in [0,α]\left[ 0,\alpha \right] (α>0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment