9.a) Check whether the series sum_(m=1)^(oo)(n^(2)x^(5))/(n^(4)+x^(3)) x in 0 alpha is uniformly convergent or not where alpha in R^(+).
ANSWER. The series "\\sum _{ n=1 }^{ \\infty }{ \\frac { { n }^{ 2 }{ x }^{ 5 }\\ }{ { n }^{ 4 }+{ x }^{ 3 } } }" is uniformly convergent in "\\left[ 0,\\alpha \\right]" .
EXPLANATION. We use Weierstrass M-Test to prove this
Since "x\\in \\left[ 0,\\alpha \\right]", then
"0\\le \\frac { { n }^{ 2 }{ x }^{ 5 }\\quad }{ { n }^{ 4 }+{ x }^{ 3 } } \\le \\frac { { n }^{ 2 }{ \\ \\alpha }^{ 5 }\\ }{ { n }^{ 4 }\\quad }" .
Denote "{ f }_{ n }(x)=\\frac { { n }^{ 2 }{ x }^{ 5 }\\ }{ { n }^{ 4 }+{ x }^{ 3 } } ,\\ { M }_{ n }=\\frac { { \\ \\alpha }^{ 5 } }{ { n }^{ 2 } }" . We have "\\left| { f }_{ n }(x) \\right| ={ f }_{ n }(x)\\le { M }_{ n }" and the series "\\sum _{ n=1 }^{ \\infty }{ { M }_{ n }\\ } ={ \\alpha }^{ 5 }\\sum _{ n=1 }^{ \\infty }{ \\frac { 1 }{ { n }^{ 2 } } }" converges (it is p-series , p=2). So, by the Weierstrass M-Test the series "\\sum _{ n=1 }^{ \\infty }{ { f }_{ n }(x)= } \\sum _{ n=1 }^{ \\infty }{ \\frac { { n }^{ 2 }{ x }^{ 5 }\\ }{ { n }^{ 4 }+{ x }^{ 3 } } }" converges uniformly in "\\left[ 0,\\alpha \\right]" (α>0).
Comments
Leave a comment