Question #211855

Draw the function f(x) = pi/L x defined in the interval -L < x < L and obtain its Fourier series expansion


1
Expert's answer
2021-09-10T06:11:44-0400


Fourier series for any function f(x) defined in the interval -L < x < L is

f(x)=a02+n=1[ancos(πnxL)+bnsin(πnxL)]f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left[a_ncos\left(\frac{\pi nx}{L}\right)+b_nsin\left(\frac{\pi nx}{L}\right)\right]

where   an=1LLLf(x)cos(πnxL)dxa_n=\frac{1}{L}\int_{-L}^{L}{f(x)cos\left(\frac{\pi nx}{L}\right)dx} , bn=1LLLf(x)sin(πnxL)dxb_n=\frac{1}{L}\int_{-L}^{L}{f(x)sin\left(\frac{\pi nx}{L}\right)dx}

For given function f(x) = πx/L

an=πL2LLxcos(πnxL)dx=1πππycos(ny)dy=0a_n=\frac{\pi}{L^2}\int_{-L}^{L}xcos\left(\frac{\pi nx}{L}\right)dx=\frac{1}{\pi}\int_{-\pi}^{\pi}ycos\left(ny\right)dy=0

an=πL2LLxsin(πnxL)dx=1πππysin(ny)dy=2ncos(πn)+2πn2sin(πn)=2(1)n+1na_n=\frac{\pi}{L^2}\int_{-L}^{L}xsin\left(\frac{\pi nx}{L}\right)dx=\frac{1}{\pi}\int_{-\pi}^{\pi}ysin\left(ny\right)dy=-\frac{2}{n}cos(\pi n)+\frac{2}{\pi n^2}sin(\pi n)=\frac{2{(-1)}^{n+1}}{n}

So the Fourier series expansion for given function is

πxL=2n=1(1)n+1nsin(πnxL)\frac{\pi x}{L}=2\sum_{n=1}^{\infty}{\frac{{(-1)}^{n+1}}{n}sin\left(\frac{\pi nx}{L}\right)}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS