Draw the function f(x) = pi/L x defined in the interval -L < x < L and obtain its Fourier series expansion
Fourier series for any function f(x) defined in the interval -L < x < L is
"f(x)=\\frac{a_0}{2}+\\sum_{n=1}^{\\infty}\\left[a_ncos\\left(\\frac{\\pi nx}{L}\\right)+b_nsin\\left(\\frac{\\pi nx}{L}\\right)\\right]"
where "a_n=\\frac{1}{L}\\int_{-L}^{L}{f(x)cos\\left(\\frac{\\pi nx}{L}\\right)dx}" , "b_n=\\frac{1}{L}\\int_{-L}^{L}{f(x)sin\\left(\\frac{\\pi nx}{L}\\right)dx}"
For given function f(x) = πx/L
"a_n=\\frac{\\pi}{L^2}\\int_{-L}^{L}xcos\\left(\\frac{\\pi nx}{L}\\right)dx=\\frac{1}{\\pi}\\int_{-\\pi}^{\\pi}ycos\\left(ny\\right)dy=0"
"a_n=\\frac{\\pi}{L^2}\\int_{-L}^{L}xsin\\left(\\frac{\\pi nx}{L}\\right)dx=\\frac{1}{\\pi}\\int_{-\\pi}^{\\pi}ysin\\left(ny\\right)dy=-\\frac{2}{n}cos(\\pi n)+\\frac{2}{\\pi n^2}sin(\\pi n)=\\frac{2{(-1)}^{n+1}}{n}"
So the Fourier series expansion for given function is
"\\frac{\\pi x}{L}=2\\sum_{n=1}^{\\infty}{\\frac{{(-1)}^{n+1}}{n}sin\\left(\\frac{\\pi nx}{L}\\right)}"
Comments
Leave a comment