Fourier series for any function f(x) defined in the interval -L < x < L is
f(x)=2a0+∑n=1∞[ancos(Lπnx)+bnsin(Lπnx)]
where an=L1∫−LLf(x)cos(Lπnx)dx , bn=L1∫−LLf(x)sin(Lπnx)dx
For given function f(x) = πx/L
an=L2π∫−LLxcos(Lπnx)dx=π1∫−ππycos(ny)dy=0
an=L2π∫−LLxsin(Lπnx)dx=π1∫−ππysin(ny)dy=−n2cos(πn)+πn22sin(πn)=n2(−1)n+1
So the Fourier series expansion for given function is
Lπx=2∑n=1∞n(−1)n+1sin(Lπnx)
Comments