Answer to Question #211244 in Calculus for Elorm

Question #211244

Evaluate\intop\intop x2+y2 +2

Where Ris bounded by x2+ y2 =1


1
Expert's answer
2021-06-28T16:38:29-0400

Let us evaluate R(x2+y2+2)dxdy.\iint\limits_R(x^2+y^2+2)dxdy.


R(x2+y2+2)dxdy=\iint\limits_R(x^2+y^2+2)dxdy=


|x=rcosφ, y=rsinφ, dxdy=rdrdφ,x2+y2=r2x=r\cos \varphi,\ y=r\sin\varphi,\ dxdy=rdrd\varphi, x^2+y^2=r^2 |


=02πdφ01(r2+2)rdr=2π1201(r2+2)d(r2+2)=π(r2+2)2201=π(922)=5π2.=\int\limits_0^{2\pi}d\varphi\int\limits_0^1(r^2+2)rdr=2\pi\frac{1}{2}\int\limits_0^1(r^2+2)d(r^2+2)= \pi\frac{(r^2+2)^2}{2}|_0^1=\pi(\frac{9}{2}-2)=\frac{5\pi}{2}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment