Question #210331

use Lagrange’s Multiplier method to find the maximum and minimum of f(x,y)= y^2 - x^2 subjected to the constraint of 1/4 x^2 + y^2 = 1


1
Expert's answer
2021-06-25T03:32:25-0400

Given 

f(x,y)=y2x2f(x,y) =y^2-x^2


Let  

g(x,y)=14x2+y21g(x,y) =\dfrac{1}{4} x^{2}+y^{2}-1

 and let 

F=f(x,y)+λg(x,y)F = f(x,y)+\lambda g(x,y)


where λ\lambda  is the Lagrangian multiplier.


F=y2x2+λ(14x2+y21)F = y^2-x^2 + \lambda(\dfrac{1}{4} x^{2}+y^{2}-1)


To find the maximum and minimum values, we have to solve the system


Fx=0\dfrac{\partial F}{\partial x} = 0




Fy=0\dfrac{\partial F}{\partial y} = 0

 


Fλ=0\dfrac{\partial F}{\partial \lambda} = 0


Hence


2x+12xλ=0-2x + \dfrac{1}{2}x\lambda = 0




2y+2yλ=02y+2y\lambda=0

14x2+y21=0\dfrac{1}{4} x^{2}+y^{2}-1=0

If x=0,x=0, we get


x=0x=0

λ=1\lambda=-1


y2=1y^2=1

When λ=1,\lambda=-1,


x=0,y=1x=0, y=-1 or x=0,y=1.x=0, y=1.


If y=0,y=0, we get


λ=4\lambda=4

y=0y=0


x2=4x^2=4

When λ=4,\lambda=4,


x=2,y=0x=-2, y=0 or x=2,y=0.x=2,y=0.


If x0,y0,x\not=0, y\not=0, we get


λ=4\lambda = 4




λ=1\lambda=-1

14x2+y21=0\dfrac{1}{4} x^{2}+y^{2}-1=0

The system has no solution.



f(0,1)=(1)2(0)2=1f(0, -1)=(-1)^2-(0)^2=1

f(0,1)=(1)2(0)2=1f(0, 1)=(1)^2-(0)^2=1


f(2,0)=(0)2(2)2=4f(-2, 0)=(0)^2-(-2)^2=-4

f(2,0)=(0)2(2)2=4f(2, 0)=(0)^2-(2)^2=-4

The maximum and minimum values of f(x,y) are respectively,

maximum value:


f(0,1)=f(0,1)=1f(0, -1)=f(0, 1)=1

minimum value:


f(2,0)=f(2,0)=4f(-2, 0)=f(2, 0)=-4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS