Given
f(x,y)=y2−x2
Let
g(x,y)=41x2+y2−1 and let
F=f(x,y)+λg(x,y)
where λ is the Lagrangian multiplier.
F=y2−x2+λ(41x2+y2−1)
To find the maximum and minimum values, we have to solve the system
∂x∂F=0
∂y∂F=0
∂λ∂F=0
Hence
−2x+21xλ=0
2y+2yλ=0
41x2+y2−1=0
If x=0, we get
x=0
λ=−1
y2=1 When λ=−1,
x=0,y=−1 or x=0,y=1.
If y=0, we get
λ=4
y=0
x2=4 When λ=4,
x=−2,y=0 or x=2,y=0.
If x=0,y=0, we get
λ=4
λ=−1
41x2+y2−1=0The system has no solution.
f(0,−1)=(−1)2−(0)2=1
f(0,1)=(1)2−(0)2=1
f(−2,0)=(0)2−(−2)2=−4
f(2,0)=(0)2−(2)2=−4
The maximum and minimum values of f(x,y) are respectively,
maximum value:
f(0,−1)=f(0,1)=1 minimum value:
f(−2,0)=f(2,0)=−4
Comments