Part 1
u=lnx2+y2
u=21ln(x2+y2)⟹e2u=x2+y2
Differentiating partially with respect to x and y
2e2u.∂x∂u=2x⟹Ux=xe−2u
∴Uxx=e−2u−2xe−2u.Ux=e−2u[1−2xUx]=e−2u[1−2x2e−2u]
Similary
2e2u.Uy=2y⟹Uy=ye−2u
∴Uyy=e−2u−2ye−2u.Uy=e−2u[1−2yUy]=e−2u[1−2y2e−2u]
Uxx+Uyy=e−2u[2−2e−2u(x2+y2)]
Uxx+Uyy=e−2u[2−2e−2u∗e2u]
Uxx+Uyy=e−2u[2−2]
Uxx+Uyy=0
Thus u=lnx2+y2 is the laphace's equation.
Part 2
u=x2−y2
Ux=2x;Uxx=2
Uy=−2y;Uyy=−2
Uxx+Uyy=2+(−2)
Uxx+Uyy=0
Thus u=x2−y2 is the laphace's equation.
Comments