Question #210053

Laplace's equation holds that Uxx+Uyy=0,verify that the second derivative of the following equations are laphace's equation.

1.u=in√x²+y².

2.u=x²-y².


1
Expert's answer
2021-06-29T11:10:40-0400

Part 1

u=lnx2+y2u=\ln \sqrt{x²+y²}

u=12ln(x2+y2)    e2u=x2+y2u=\frac{1}{2} \ln (x²+y²) \implies e^{2u}= x^2+y^2

Differentiating partially with respect to x and y

2e2u.ux=2x    Ux=xe2u2e^{2u}.\frac{∂u}{∂x}=2x \implies U_x= xe^{-2u}

Uxx=e2u2xe2u.Ux=e2u[12xUx]=e2u[12x2e2u]\therefore U_{xx}=e^{-2u}-2xe^{-2u}. U_x= e^{-2u}[1-2xU_x]= e^{-2u}[1-2x^2e^{-2u}]

Similary

2e2u.Uy=2y    Uy=ye2u2e^{2u}. U_y=2y \implies U_y=ye^{-2u}

Uyy=e2u2ye2u.Uy=e2u[12yUy]=e2u[12y2e2u]\therefore U_{yy}=e^{-2u}-2ye^{-2u}. U_y= e^{-2u}[1-2yU_y]= e^{-2u}[1-2y^2e^{-2u}]

Uxx+Uyy=e2u[22e2u(x2+y2)]U_{xx}+U_{yy}=e^{-2u}[2-2e^{-2u}(x^2+y^2)]

Uxx+Uyy=e2u[22e2ue2u]U_{xx}+U_{yy}=e^{-2u}[2-2e^{-2u}*e^{2u}]

Uxx+Uyy=e2u[22]U_{xx}+U_{yy}=e^{-2u}[2-2]

Uxx+Uyy=0U_{xx}+U_{yy}=0

Thus u=lnx2+y2u=\ln \sqrt{x²+y²} is the laphace's equation.


Part 2

u=x2y2u=x²-y²

Ux=2x;Uxx=2U_x=2x; U_{xx}= 2

Uy=2y;Uyy=2U_y=-2y; U_{yy}= -2

Uxx+Uyy=2+(2)U_{xx}+U_{yy}=2+(-2)

Uxx+Uyy=0U_{xx}+U_{yy}=0

Thus u=x2y2u={x²-y²} is the laphace's equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS