Laplace's equation holds that Uxx+Uyy=0,verify that the second derivative of the following equations are laphace's equation.
1.u=in√x²+y².
2.u=x²-y².
Part 1
"u=\\ln \\sqrt{x\u00b2+y\u00b2}"
"u=\\frac{1}{2} \\ln (x\u00b2+y\u00b2) \\implies e^{2u}= x^2+y^2"
Differentiating partially with respect to x and y
"2e^{2u}.\\frac{\u2202u}{\u2202x}=2x \\implies U_x= xe^{-2u}"
"\\therefore U_{xx}=e^{-2u}-2xe^{-2u}. U_x= e^{-2u}[1-2xU_x]= e^{-2u}[1-2x^2e^{-2u}]"
Similary
"2e^{2u}. U_y=2y \\implies U_y=ye^{-2u}"
"\\therefore U_{yy}=e^{-2u}-2ye^{-2u}. U_y= e^{-2u}[1-2yU_y]= e^{-2u}[1-2y^2e^{-2u}]"
"U_{xx}+U_{yy}=e^{-2u}[2-2e^{-2u}(x^2+y^2)]"
"U_{xx}+U_{yy}=e^{-2u}[2-2e^{-2u}*e^{2u}]"
"U_{xx}+U_{yy}=e^{-2u}[2-2]"
"U_{xx}+U_{yy}=0"
Thus "u=\\ln \\sqrt{x\u00b2+y\u00b2}" is the laphace's equation.
Part 2
"u=x\u00b2-y\u00b2"
"U_x=2x; U_{xx}= 2"
"U_y=-2y; U_{yy}= -2"
"U_{xx}+U_{yy}=2+(-2)"
"U_{xx}+U_{yy}=0"
Thus "u={x\u00b2-y\u00b2}" is the laphace's equation.
Comments
Leave a comment