Find the 4th left, right, and midpoint Riemann sums of the following functions with respect to particular partitioning of the given intervals. (a.) π(π₯) = π₯ 3 ππ [0,1] (b.) π(π₯) =π ππ π ππ π₯ ππ [0, β1]
a) [0,1]
Left sum:
"\\Delta x=(a+b)\/n=(0+1)\/4=0.25"
Sum=0.25(f(0)+f(0.25)+f(0.5)+f(0.75))=0.25(0+0.65+0.84+0.65)=0.53
Right sum:
"\\Delta x=(a+b)\/n=(0+1)\/4=0.25"
Sum=0.25(f(0.25)+f(0.5)+f(0.75)+f(1))=0.25(0.65+0.84+0.65+0)=0.53
Middle sum:
"\\Delta x=(a+b)\/n=(0+1)\/4=0.25"
Sum=0.25(f(0.125)+f(0.375)+f(0.625)+f(0.875))=0.25(0.37+0.8+0.8+0.33)=0.59
b) [0,-1]
Left sum:
"\\Delta x=(a+b)\/n=(0-1)\/4=-0.25"
Sum=-0.25(f(0)+f(-0.25)+f(-0.5)+f(-0.75))=-0.25(0-0.65-0.84-0.65)=0.53
Right sum:
"\\Delta x=(a+b)\/n=(0-1)\/4=-0.25"
Sum=-0.25(f(-0.25)+f(-0.5)+f(-0.75)+f(-1))=-0.25(-0.65-0.84-0.65-0)=0.53
Middle sum:
"\\Delta x=(a+b)\/n=(0-1)\/4=-0.25"
Sum=-0.25(f(-0.125)+f(-0.375)+f(-0.625)+f(-0.875))=-0.25(-0.37-0.8-0.8-0.33)=0.59
Comments
Leave a comment