Question #211421

Your task is to discuss the concept of supremum and infimum for real numbers. Here are some hints on what your presentation can cover.

1. Give the definition of supremum and infimum for a nonempty subset of R.

2. Provide some examples to illustrate the concepts of supremum and infimum.

3. Discuss the Completeness Axiom.

4. Find some standard exercises pertaining to supremum and infimum and discuss its solution. 5. State and prove the Archimedean Property using the Completeness Axiom.


1
Expert's answer
2021-07-04T17:31:52-0400

Question 1:Definition 1:[Supremum] Let AR which is bounded above. An element αR is called the supremum of A(sup(A)) if it satisfy the following: (a.)xαxA(b.)if α0R such that xα0 then αα0\textsf{Question 1:}\\ \textbf{Definition 1:} \text{[Supremum] Let $A \subseteq \mathbb{R}$ which is bounded above. An element $\alpha \in \mathbb{R}$ is called} \\ \text{ the supremum of $A\left(\sup(A)\right)$ if it satisfy the following: } \\ (a.) x \le \alpha\,\, \forall x \in A\\ (b.) \text{if $\alpha_0 \in \mathbb{R}$ such that $x\le \alpha_0 $ then $\alpha \le \alpha_0$}Definition 2:[Infimum] Let AR which is bounded above. An element βR is called the infimum of A(inf(A)) if it satisfy the following: (a.)βxxA(b.)if β0R such that β0x then β0βQuestion 2:Examples: 1. consider the interval A=[1,2]R we observe that every element in A are less than or equal to every real number greater than or equal to 2 with this we can say that 2 isis one of the upper bounds for A , but 2 is the smallest of these upper bounds . Hence we concluede thatthe supremum of A is 2. That is, sup(A)=2Similarly we also note that 1 is a lower bound for A, but it is greater than the other lower bounds of A hence we conclude that inf(A)=1Note:the sup or inf of a set need not be include in the set as in the interval B=(0,1)which has inf(B)=0 and sup(B)=1Question 3Theorem[Completeness axiom]. A ordered field F is complete if every nonempty subset of F has a least upper bound that is also contained in F.This theorem is also true if we use greatest lower bound.The completeness axiom is used in proving that the set Q is not complete .Consider the set AQ defined as A{xQx22}It is obvious that sup(A)=2, but 2Q which follows by completeness axiom that Q is not complete.For R the reverse is the case as for every nonempty subset of R has their least upper bound contained in R, which shows the completeness of RQuestion 4Example: Find the inf and sup of the following set if the exist1. A={xR2x+5>0}2. B={xRx<1x}Solution:1. Note that solving the inequality in A we have A={xRx>52}    52<xxA    A=(52,)    inf(A)=52it is obovious that A is not bounded above hence it follows that sup(A) does not exist.2. SImilarly as in 1 above the set B is equivalent to B={xR1<x<1}    B=(1,1)    inf(B)=1 and sup(B)=1Question 5:Theorem [Archimedean Property]. if xR, then there exists nxN such that xnxProof:If the assertion is false, then nx for all nN; therefore, x is an upper bound of N.Therefore, by theCompleteness axiom,the nonemptyset N has a supremum uR.Subtracting 1 from u gives a number u1, which is smaller than the supremum u of N.Therefore u1 is not an upper bound of N, so there exists mN with u1<m.Adding 1 gives u<m+1, and since m+1N, this inequality contradicts the fact that uis an upper bound of N.\textbf{Definition 2:} \text{[Infimum] Let $A \subseteq \mathbb{R}$ which is bounded above. An element $\beta \in \mathbb{R}$ is called} \\ \text{ the infimum of $A\left( \inf(A) \right)$ if it satisfy the following: } \\ (a.) \beta\le x\,\, \forall x \in A\\ (b.) \text{if $\beta_0 \in \mathbb{R}$ such that $\beta_0\le x $ then $\beta_0 \le \beta$}\\ \textsf{Question 2:} \\ \textbf{Examples: } \\ \text{1. consider the interval $A = [1,2] \subset \mathbb{R}$ we observe that every element in $A$ are less than }\\ \text{or equal to every real number greater than or equal to \(2\) with this we can say that \(2\) is}\\ \text{is one of the upper bounds for $A$ , but \(2\) is the smallest of these upper bounds . Hence }\\ \text{we concluede thatthe supremum of $A$ is \(2\). That is, $\sup(A) = 2$}\\ \text{Similarly we also note that $1$ is a lower bound for $A$, but it is greater than the other }\\ \text{lower bounds of $A$ hence we conclude that $\inf(A) = 1$}\\ \boxed{\textcolor{red}{Note:} \text{the $\sup$ or $\inf$ of a set need not be include in the set as in the interval $B=(0,1)$}}\\ \text{which has $\inf(B) = 0$ and $\sup (B)=1$}\\ \textsf{Question 3}\\ \textbf{Theorem[Completeness axiom]. A ordered field $\mathbb{F}$ is complete if every }\\ \text{nonempty subset of $\mathbb{F}$ has a least upper bound that is also contained in $\mathbb{F}$}.\\ \text{This theorem is also true if we use greatest lower bound}.\\ \text{The completeness axiom is used in proving that the set $\mathbb{Q}$ is not complete .}\\ \text{Consider the set $A \subseteq \mathbb{Q}$ defined as $A\{ x \in \mathbb{Q}\mid x^2 \le 2 \}$} \\ \text{It is obvious that $\sup(A) = \sqrt{2}$, but $\sqrt{2}\notin \mathbb{Q}$ which follows by completeness axiom that }\\ \text{$\mathbb{Q}$ is not complete.}\\ \text{For $\mathbb{R}$ the reverse is the case as for every nonempty subset of $\mathbb{R}$ has their least upper bound }\\ \text{contained in $\mathbb{R}$, which shows the completeness of $\mathbb{R}$}\\ \textsf{Question 4}\\ \textbf{Example: }\text{Find the $\inf$ and $\sup$ of the following set if the exist}\\ 1. \text{ $A = \{ x\in \mathbb{R} \mid 2x + 5 > 0 \} $}\\ 2. \text{ $B = \{ x\in \mathbb{R} \mid x<\frac{1}{x} \} $}\\ \textcolor{teal}{Solution:}\\ 1. \text{ Note that solving the inequality in $A$ we have $A = \{ x\in \mathbb{R} \mid x > \frac{-5}{2} \} $}\\ \implies \frac{-5}{2} < x\,\, \forall x \in A \implies A = (\frac{-5}{2},\infty) \implies \inf(A) = \frac{-5}{2}\\ \text{it is obovious that $A$ is not bounded above hence it follows that $\sup(A)$ does not exist.}\\ 2.\text{ SImilarly as in 1 above the set $B$ is equivalent to $B = \{ x \in \mathbb{R} \mid -1 < x < 1 \}$}\\ \implies B = (-1,1) \implies \inf(B) = -1 \text{ and } \sup(B) = 1\\ \textsf{Question 5:}\\ \boxed{\textbf{Theorem [Archimedean Property].} \text{ if $x\in \mathbb{R}$, then there exists $n_x \in \mathbb{N}$ such that $x \leq n_x$}}\\ \texttt{Proof:}\\ \text{If the assertion is false, then $n \leq x$ for all $n \in \mathbb{N}$; therefore, $x$ is an upper bound of $\mathbb{N}$.}\\ \text{Therefore, by theCompleteness axiom,the nonemptyset $\mathbb{N}$ has a supremum $u \in \mathbb{R}$.}\\ \text{Subtracting $1$ from $u$ gives a number $u - 1$, which is smaller than the supremum $u$ of $\mathbb{N}$.}\\ \text{Therefore $u-1$ is not an upper bound of $\mathbb{N}$, so there exists $m \in \mathbb{N}$ with $u-1 < m$.}\\ \text{Adding $1$ gives $u < m+1$, and since $m+1 \in \mathbb{N}$, this inequality contradicts the fact that $u$}\\ \text{is an upper bound of $\mathbb{N}$.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS