use Lagrange’s Multiplier method to find the maximum and minimum of f(x,y)= y^2 - x^2 subjected to the constraint of 1/4 x^2 + y^2 = 1
fx=λgx,fy=λgyf_x=\lambda g_x,f_y=\lambda g_yfx=λgx,fy=λgy
g(x,y)=x2/4+y2=1g(x,y)=x^2/4+y^2=1g(x,y)=x2/4+y2=1
−2x=λx/2-2x=\lambda x/2−2x=λx/2
2y=2λy2y=2\lambda y2y=2λy
So, we have:
f(0,1)=1,f(0,−1)=1f(0,1)=1,f(0,-1)=1f(0,1)=1,f(0,−1)=1 - maximum value
f(2,0)=−4,f(−2,0)=−4f(2,0)=-4,f(-2,0)=-4f(2,0)=−4,f(−2,0)=−4 - minimum value
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment