use Lagrange’s Multiplier method to find the maximum and minimum of f(x,y)= y^2 - x^2 subjected to the constraint of 1/4 x^2 + y^2 = 1
"f_x=\\lambda g_x,f_y=\\lambda g_y"
"g(x,y)=x^2\/4+y^2=1"
"-2x=\\lambda x\/2"
"2y=2\\lambda y"
So, we have:
"f(0,1)=1,f(0,-1)=1" - maximum value
"f(2,0)=-4,f(-2,0)=-4" - minimum value
Comments
Leave a comment