∑ n = 2 ∞ ( n 4 + 9 − n 4 − 9 ) \displaystyle\sum_{n=2}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9}) n = 2 ∑ ∞ ( n 4 + 9 − n 4 − 9 )
= ∑ n = 2 ∞ ( n 4 + 9 − n 4 − 9 ) ( n 4 + 9 + n 4 − 9 ) n 4 + 9 + n 4 − 9 =\displaystyle\sum_{n=2}^{\infin}\dfrac{(\sqrt{n^4+9}-\sqrt{n^4-9})(\sqrt{n^4+9}+\sqrt{n^4-9})}{\sqrt{n^4+9}+\sqrt{n^4-9}} = n = 2 ∑ ∞ n 4 + 9 + n 4 − 9 ( n 4 + 9 − n 4 − 9 ) ( n 4 + 9 + n 4 − 9 )
= ∑ n = 2 ∞ n 4 + 9 − n 4 + 9 n 4 + 9 + n 4 − 9 =\displaystyle\sum_{n=2}^{\infin}\dfrac{n^4+9-n^4+9}{\sqrt{n^4+9}+\sqrt{n^4-9}} = n = 2 ∑ ∞ n 4 + 9 + n 4 − 9 n 4 + 9 − n 4 + 9
= 18 ∑ n = 2 ∞ 1 n 4 + 9 + n 4 − 9 =18\displaystyle\sum_{n=2}^{\infin}\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}} = 18 n = 2 ∑ ∞ n 4 + 9 + n 4 − 9 1 The p-series ∑ n = 2 ∞ 1 n 2 \displaystyle\sum_{n=2}^{\infin}\dfrac{1}{n^2} n = 2 ∑ ∞ n 2 1 converges since p = 2 > 1. p=2>1. p = 2 > 1.
lim n → ∞ 1 n 4 + 9 + n 4 − 9 1 n 2 \lim\limits_{n\to \infin}\dfrac{\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}}}{\dfrac{1}{n^2}} n → ∞ lim n 2 1 n 4 + 9 + n 4 − 9 1
= lim n → ∞ n 2 n 4 + 9 + n 4 − 9 =\lim\limits_{n\to \infin}\dfrac{n^2}{\sqrt{n^4+9}+\sqrt{n^4-9}} = n → ∞ lim n 4 + 9 + n 4 − 9 n 2
= lim n → ∞ n 2 n 2 n 4 + 9 + n 4 − 9 n 2 =\lim\limits_{n\to \infin}\dfrac{\dfrac{n^2}{n^2}}{\dfrac{\sqrt{n^4+9}+\sqrt{n^4-9}}{n^2}} = n → ∞ lim n 2 n 4 + 9 + n 4 − 9 n 2 n 2
= 1 1 + 1 = 1 2 < ∞ =\dfrac{1}{1+1}=\dfrac{1}{2}<\infin = 1 + 1 1 = 2 1 < ∞
Therefore the given series ∑ n = 2 ∞ ( n 4 + 9 − n 4 − 9 ) \displaystyle\sum_{n=2}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9}) n = 2 ∑ ∞ ( n 4 + 9 − n 4 − 9 ) converges by the Limit Comparison Test.
Comments