[√n^4+9-√n^4-9]∞∑n=0 test the congervence
"=\\displaystyle\\sum_{n=2}^{\\infin}\\dfrac{(\\sqrt{n^4+9}-\\sqrt{n^4-9})(\\sqrt{n^4+9}+\\sqrt{n^4-9})}{\\sqrt{n^4+9}+\\sqrt{n^4-9}}"
"=\\displaystyle\\sum_{n=2}^{\\infin}\\dfrac{n^4+9-n^4+9}{\\sqrt{n^4+9}+\\sqrt{n^4-9}}"
"=18\\displaystyle\\sum_{n=2}^{\\infin}\\dfrac{1}{\\sqrt{n^4+9}+\\sqrt{n^4-9}}"
The p-series "\\displaystyle\\sum_{n=2}^{\\infin}\\dfrac{1}{n^2}" converges since "p=2>1."
"=\\lim\\limits_{n\\to \\infin}\\dfrac{n^2}{\\sqrt{n^4+9}+\\sqrt{n^4-9}}"
"=\\lim\\limits_{n\\to \\infin}\\dfrac{\\dfrac{n^2}{n^2}}{\\dfrac{\\sqrt{n^4+9}+\\sqrt{n^4-9}}{n^2}}"
"=\\dfrac{1}{1+1}=\\dfrac{1}{2}<\\infin"
Therefore the given series "\\displaystyle\\sum_{n=2}^{\\infin}(\\sqrt{n^4+9}-\\sqrt{n^4-9})" converges by the Limit Comparison Test.
Comments
Leave a comment