Question #211989

[√n^4+9-√n^4-9]∞∑n=0 test the congervence


1
Expert's answer
2021-06-30T10:00:40-0400
n=2(n4+9n49)\displaystyle\sum_{n=2}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9})

=n=2(n4+9n49)(n4+9+n49)n4+9+n49=\displaystyle\sum_{n=2}^{\infin}\dfrac{(\sqrt{n^4+9}-\sqrt{n^4-9})(\sqrt{n^4+9}+\sqrt{n^4-9})}{\sqrt{n^4+9}+\sqrt{n^4-9}}

=n=2n4+9n4+9n4+9+n49=\displaystyle\sum_{n=2}^{\infin}\dfrac{n^4+9-n^4+9}{\sqrt{n^4+9}+\sqrt{n^4-9}}

=18n=21n4+9+n49=18\displaystyle\sum_{n=2}^{\infin}\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}}

The p-series n=21n2\displaystyle\sum_{n=2}^{\infin}\dfrac{1}{n^2} converges since p=2>1.p=2>1.



limn1n4+9+n491n2\lim\limits_{n\to \infin}\dfrac{\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}}}{\dfrac{1}{n^2}}

=limnn2n4+9+n49=\lim\limits_{n\to \infin}\dfrac{n^2}{\sqrt{n^4+9}+\sqrt{n^4-9}}

=limnn2n2n4+9+n49n2=\lim\limits_{n\to \infin}\dfrac{\dfrac{n^2}{n^2}}{\dfrac{\sqrt{n^4+9}+\sqrt{n^4-9}}{n^2}}

=11+1=12<=\dfrac{1}{1+1}=\dfrac{1}{2}<\infin


Therefore the given series n=2(n4+9n49)\displaystyle\sum_{n=2}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9}) converges by the Limit Comparison Test.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS