n=2∑∞(n4+9−n4−9)
=n=2∑∞n4+9+n4−9(n4+9−n4−9)(n4+9+n4−9)
=n=2∑∞n4+9+n4−9n4+9−n4+9
=18n=2∑∞n4+9+n4−91 The p-series n=2∑∞n21 converges since p=2>1.
n→∞limn21n4+9+n4−91
=n→∞limn4+9+n4−9n2
=n→∞limn2n4+9+n4−9n2n2
=1+11=21<∞
Therefore the given series n=2∑∞(n4+9−n4−9) converges by the Limit Comparison Test.
Comments