1.
(a) f(x)=x2−1−xex+10x+2xex2−315;
dxdf=−21x2−3−(x+1)ex+10xln10+4x24x2ex2−2ex2=
=−21x2−3−(x+1)ex+10xln10+2x2(2x2−1)ex2;
(b) F(x)=exsinx+secx+lnx2;
dxdF=exsinx+excosx+cosxtanx+x2=
=(sinx+cosx)ex+cosxtanx+x2;
2.
We use the implicit function differentiation rule:
5y4dxdy+4y3+12xy2dxdy+3x2=0;
dxdy(5y4+12xy2)=−(4y3+3x2);
dxdy=−5y4+12xy24y3+3x2.
At the point (x,y)=(0,-1) we have:
dxy=−5⋅(−1)4+04⋅(−1)3+0=54.
Comments
Leave a comment