Answer to Question #212388 in Calculus for Kenneth

Question #212388

1. Find the derivative of the following functions with respect to x.

(a) f(x) = x^-1/2 minus xe^x + 10^x + e^x^2 / 2x minus cube root of 15

(b) F(x) = e^x sinx + sec x + ln x^2

2. If y^5 + 4xy^3 + x^3 +1 =0, find dy / dx and determine its values at the point ( x, y) = ( 0, -1).



1
Expert's answer
2021-07-05T16:50:52-0400

1.

(a) f(x)=x12xex+10x+ex22x153;f(x)=x^\frac{-1}{ 2}-xe^x+10^x+\frac{e^{x^2}}{2x}-\sqrt[3]{15};


dfdx=12x32(x+1)ex+10xln10+4x2ex22ex24x2=\frac{df}{dx}=-\frac{1}{2}x^\frac{-3}{2}-(x+1)e^x+10^xln10+\frac{4x^2e^{x^2}-2e^{x^2}}{4x^2}=


=12x32(x+1)ex+10xln10+(2x21)ex22x2=-\frac{1}{2}x^\frac{-3}{2}-(x+1)e^x+10^xln10+\frac{(2x^2-1)e^{x^2}}{2x^2};


(b) F(x)=exsinx+secx+lnx2;F(x)=e^xsinx+secx+lnx^2;


dFdx=exsinx+excosx+tanxcosx+2x=\frac{dF}{dx}=e^xsinx+e^xcosx+\frac{tanx}{cosx}+\frac{2}{x}=


=(sinx+cosx)ex+tanxcosx+2x;=(sinx+cosx)e^x+\frac{tanx}{cosx}+\frac{2}{x};

2.

We use the implicit function differentiation rule:


5y4dydx+4y3+12xy2dydx+3x2=0;5y^4\frac{dy}{dx}+4y^3+12xy^2\frac{dy}{dx}+3x^2=0;


dydx(5y4+12xy2)=(4y3+3x2);\frac{dy}{dx}(5y^4+12xy^2)=-(4y^3+3x^2);


dydx=4y3+3x25y4+12xy2.\frac{dy}{dx}=-\frac{4y^3+3x^2}{5y^4+12xy^2} .


At the point (x,y)=(0,-1) we have:


ydx=4(1)3+05(1)4+0=45.\frac{y}{dx}=-\frac{4\cdot (-1)^3+0}{5\cdot (-1)^4+0}=\frac{4}{5} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment