1. Find the derivative of the following functions with respect to x.
(a) f(x) = x^-1/2 minus xe^x + 10^x + e^x^2 / 2x minus cube root of 15
(b) F(x) = e^x sinx + sec x + ln x^2
2. If y^5 + 4xy^3 + x^3 +1 =0, find dy / dx and determine its values at the point ( x, y) = ( 0, -1).
1.
(a) "f(x)=x^\\frac{-1}{ 2}-xe^x+10^x+\\frac{e^{x^2}}{2x}-\\sqrt[3]{15};"
"\\frac{df}{dx}=-\\frac{1}{2}x^\\frac{-3}{2}-(x+1)e^x+10^xln10+\\frac{4x^2e^{x^2}-2e^{x^2}}{4x^2}="
"=-\\frac{1}{2}x^\\frac{-3}{2}-(x+1)e^x+10^xln10+\\frac{(2x^2-1)e^{x^2}}{2x^2}";
(b) "F(x)=e^xsinx+secx+lnx^2;"
"\\frac{dF}{dx}=e^xsinx+e^xcosx+\\frac{tanx}{cosx}+\\frac{2}{x}="
"=(sinx+cosx)e^x+\\frac{tanx}{cosx}+\\frac{2}{x};"
2.
We use the implicit function differentiation rule:
"5y^4\\frac{dy}{dx}+4y^3+12xy^2\\frac{dy}{dx}+3x^2=0;"
"\\frac{dy}{dx}(5y^4+12xy^2)=-(4y^3+3x^2);"
"\\frac{dy}{dx}=-\\frac{4y^3+3x^2}{5y^4+12xy^2} ."
At the point (x,y)=(0,-1) we have:
"\\frac{y}{dx}=-\\frac{4\\cdot (-1)^3+0}{5\\cdot (-1)^4+0}=\\frac{4}{5} ."
Comments
Leave a comment