1. Evaluate the following limits
(a) Lim y"\\to" -1 Fourth root of 4y^3 minus 3
(b) lim x"\\to" infinity 1+x all over 1-x
(c) lim x "\\to" 2 x - 2 all over 4 - x^2
(d) lim x "\\to" 0 sinx - x cos x all over x^3
(a)
since we consider "y\\in \\R, y\\geq0."
(b)
"=\\lim\\limits_{x\\to\\infin}\\bigg(\\dfrac{\\dfrac{1}{x}+1}{\\dfrac{1}{x}-1}\\bigg)=\\dfrac{0+1}{0-1}=-1"
(c)
"=\\lim\\limits_{x\\to2}\\big(\\dfrac{-1}{2+x}\\big)=-\\dfrac{1}{2+2}=-\\dfrac{1}{4}"
(d)
"\\lim\\limits_{x\\to0}(\\sin x-x\\cos x)=\\sin(0)-0(\\cos(0))=0"
"\\lim\\limits_{x\\to0}(x^3)=(0)^3=0"
"\\dfrac{0}{0}=>\\lim\\limits_{x\\to0}(\\dfrac{\\sin x-x\\cos x}{x^3})=\\lim\\limits_{x\\to0}\\dfrac{(\\sin x-x\\cos x)'}{(x^3)'}"
"=\\lim\\limits_{x\\to0}\\dfrac{\\cos x-\\cos x+x\\sin x}{3x^2}=\\lim\\limits_{x\\to0}\\dfrac{\\sin x}{3x}"
"=\\dfrac{1}{3}\\lim\\limits_{x\\to0}\\dfrac{\\sin x}{x}=\\dfrac{1}{3}(1)=\\dfrac{1}{3}"
We use that "\\lim\\limits_{x\\to0}\\dfrac{\\sin x}{x}=1"
Comments
Leave a comment