Answer to Question #212381 in Calculus for Kenneth

Question #212381

1. Evaluate the following limits

(a) Lim y\to -1 Fourth root of 4y^3 minus 3

(b) lim x\to infinity 1+x all over 1-x

(c) lim x \to 2 x - 2 all over 4 - x^2

(d) lim x \to 0 sinx - x cos x all over x^3


1
Expert's answer
2021-07-01T13:34:11-0400

(a)


limy1(y343)=DNE (does not exist)\lim\limits_{y\to-1}(\sqrt[4]{y^3}-3)=DNE\ (\text{does not exist)}

since we consider yR,y0.y\in \R, y\geq0.


(b)


limx(1+x1x)=limx(1x+xx1xxx)\lim\limits_{x\to\infin}(\dfrac{1+x}{1-x})=\lim\limits_{x\to\infin}\bigg(\dfrac{\dfrac{1}{x}+\dfrac{x}{x}}{\dfrac{1}{x}-\dfrac{x}{x}}\bigg)

=limx(1x+11x1)=0+101=1=\lim\limits_{x\to\infin}\bigg(\dfrac{\dfrac{1}{x}+1}{\dfrac{1}{x}-1}\bigg)=\dfrac{0+1}{0-1}=-1

(c)


limx2(x24x2)=limx2(x2(2x)(2+x))\lim\limits_{x\to2}(\dfrac{x-2}{4-x^2})=\lim\limits_{x\to2}\bigg(\dfrac{x-2}{(2-x)(2+x)}\bigg)

=limx2(12+x)=12+2=14=\lim\limits_{x\to2}\big(\dfrac{-1}{2+x}\big)=-\dfrac{1}{2+2}=-\dfrac{1}{4}

(d)


limx0(sinxxcosxx3)\lim\limits_{x\to0}(\dfrac{\sin x-x\cos x}{x^3})

limx0(sinxxcosx)=sin(0)0(cos(0))=0\lim\limits_{x\to0}(\sin x-x\cos x)=\sin(0)-0(\cos(0))=0

limx0(x3)=(0)3=0\lim\limits_{x\to0}(x^3)=(0)^3=0

00=>limx0(sinxxcosxx3)=limx0(sinxxcosx)(x3)\dfrac{0}{0}=>\lim\limits_{x\to0}(\dfrac{\sin x-x\cos x}{x^3})=\lim\limits_{x\to0}\dfrac{(\sin x-x\cos x)'}{(x^3)'}

=limx0cosxcosx+xsinx3x2=limx0sinx3x=\lim\limits_{x\to0}\dfrac{\cos x-\cos x+x\sin x}{3x^2}=\lim\limits_{x\to0}\dfrac{\sin x}{3x}

=13limx0sinxx=13(1)=13=\dfrac{1}{3}\lim\limits_{x\to0}\dfrac{\sin x}{x}=\dfrac{1}{3}(1)=\dfrac{1}{3}

We use that limx0sinxx=1\lim\limits_{x\to0}\dfrac{\sin x}{x}=1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment