Answer to Question #208429 in Calculus for Areeba

Question #208429

 Reduce the following fraction into partial fractions: 3x^ 2 + 7x + 28/x(x^ 2 + x + 7)


1
Expert's answer
2021-06-21T11:17:59-0400
3x2+7x+28x(x2+x+7)=Ax+Bx2+x+7+Cxx2+x+7\dfrac{3x^2+7x+28}{x(x^2+x+7)}=\dfrac{A}{x}+\dfrac{B}{x^2+x+7}+\dfrac{Cx}{x^2+x+7}

=Ax2+Ax+7A+Bx+Cx2x(x2+x+7)=\dfrac{Ax^2+Ax+7A+Bx+Cx^2}{x(x^2+x+7)}

x2:A+C=3x^2: A+C=3


x1:A+B=7x^1: A+B=7


x0:7A=28x^0: 7A=28


A=4A=4

B=3B=3

C=1C=-1



3x2+7x+28x(x2+x+7)=4x+3x2+x+7xx2+x+7\dfrac{3x^2+7x+28}{x(x^2+x+7)}=\dfrac{4}{x}+\dfrac{3}{x^2+x+7}-\dfrac{x}{x^2+x+7}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment