L[f(t)]=F(s)=∫0∞f(t)e−stdt=∫0∞t2sin(at)e−stdt=A→∞lim∫0At2sin(at)e−stdt=[u=tdu=dtdv=tsin(at)e−stdtv=∫tsin(at)e−stdt]−−(∗)
v=∫tsin(at)e−stdt=2i1[∫te(ia−s)tdt−∫te−(ia+s)tdt]=2i1[tia−se(ia−s)t−∫ia−se(ia−s)tdt+tia+se−(ia+s)t−∫ia+se−(ia+s)tdt]=2i1[tia−se(ia−s)t−(ia−s)2e(ia−s)t+tia+se−(ia+s)t+(ia+s)2e−(ia+s)t]−−(i)
Integrating v, we obtain;
∫vdt=2i1[∫tia−se(ia−s)tdt−(ia−s)3e(ia−s)t+∫tia+se−(ia+s)tdt−(ia+s)3e−(ia+s)t]−−(ii)
=2i1{ia−s1[tia−se(ia−s)t−(ia−s)2e(ia−s)t]−(ia−s)3e(ia−s)t−ia+s1[tia+se−(ia+s)t+(ia+s)2e−(ia+s)t]−(ia+s)3e−(ia+s)t}=2i1[t(ia−s)2e(ia−s)t−2(ia−s)3e(ia−s)t−t(ia+s)2e−(ia+s)t−2(ia+s)3e−(ia+s)t]
Returning back to the start and using 1 and 2, we have
==A→∞lim(uv∣0A−∫0Avdu)A→∞lim{2it[tia−se(ia−s)t−(ia−s)2e(ia−s)t+tia+se−(ia+s)t+(ia+s)2e−(ia+s)t]∣∣0A−2i1[t(ia−s)2e(ia−s)t−2(ia−s)3e(ia−s)t−t(ia+s)2e−(ia+s)t−2(ia+s)3e−(ia+s)t]∣∣0A}A→∞lim{2iA[ia−sAe(ia−s)A−(ia−s)2e(ia−s)A+ia+sAe−(ia+s)A+(ia+s)2e−(ia+s)A]−2i1[(ia−s)2Ae(ia−s)A−2(ia−s)3e(ia−s)A−(ia+s)2Ae−(ia+s)A−2(ia+s)3e−(ia+s)A]+2i1[−2(ia−s)31−2(ia+s)31]}
F(s)=2i−2[(ia−s)31+(ia+s)31]=i−1[(ia−s)(ia+s)]3(ia+s)3+(ia−s)3=i−1(−a2−s2)3−ia3−3a2s+3ias2+s3+(−ia3+3a2s+3ias2−s3)=i−1−(a2+s2)3−2ia3+6ias2=(a2+s2)32a(3s2−a2)
Comments
Leave a comment