Answer to Question #208279 in Calculus for Abuabu

Question #208279

Find the laplace transform of sinat where a is a constant


1
Expert's answer
2021-06-21T16:34:06-0400

L[f(t)]=F(s)=0f(t)estdt=0t2sin(at)estdt=limA0At2sin(at)estdt=[u=tdv=tsin(at)estdtdu=dtv=tsin(at)estdt]()\begin{aligned} \mathcal{L}[f(t)] &=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} t^{2} \sin (a t) e^{-s t} d t \\ &=\lim _{A \rightarrow \infty} \int_{0}^{A} t^{2} \sin (a t) e^{-s t} d t\\ &=\left[\begin{array}{cc} u=t & d v=t \sin (a t) e^{-s t} d t \\ d u=d t & v=\int t \sin (a t) e^{-s t} d t \end{array}\right]--(*) \end{aligned}


v=tsin(at)estdt=12i[te(ias)tdtte(ia+s)tdt]=12i[te(ias)tiase(ias)tiasdt+te(ia+s)tia+se(ia+s)tia+sdt]=12i[te(ias)tiase(ias)t(ias)2+te(ia+s)tia+s+e(ia+s)t(ia+s)2](i)\begin{aligned} v &=\int t \sin (a t) e^{-s t} d t=\frac{1}{2 i}\left[\int t e^{(i a-s) t} d t-\int t e^{-(i a+s) t} d t\right] \\ &=\frac{1}{2 i}\left[t \frac{e^{(i a-s) t}}{i a-s}-\int \frac{e^{(i a-s) t}}{i a-s} d t+t \frac{e^{-(i a+s) t}}{i a+s}-\int \frac{e^{-(i a+s) t}}{i a+s} d t\right] \\ &=\frac{1}{2 i}\left[t \frac{e^{(i a-s) t}}{i a-s}-\frac{e^{(i a-s) t}}{(i a-s)^{2}}+t \frac{e^{-(i a+s) t}}{i a+s}+\frac{e^{-(i a+s) t}}{(i a+s)^{2}}\right] \end{aligned} --(i)


Integrating v, we obtain;

vdt=12i[te(ias)tiasdte(ias)t(ias)3+te(ia+s)tia+sdte(ia+s)t(ia+s)3](ii)\int v d t=\frac{1}{2 i}\left[\int t \frac{e^{(i a-s) t}}{i a-s} d t-\frac{e^{(i a-s) t}}{(i a-s)^{3}}+\int t \frac{e^{-(i a+s) t}}{i a+s} d t-\frac{e^{-(i a+s) t}}{(i a+s)^{3}}\right]--(ii)

=12i{1ias[te(ias)tiase(ias)t(ias)2]e(ias)t(ias)31ia+s[te(ia+s)tia+s+e(ia+s)t(ia+s)2]e(ia+s)t(ia+s)3}=12i[te(ias)t(ias)22e(ias)t(ias)3te(ia+s)t(ia+s)22e(ia+s)t(ia+s)3]\begin{array}{l} =\frac{1}{2 i}\left\{\frac{1}{i a-s}\left[t \frac{e^{(i a-s) t}}{i a-s}-\frac{e^{(i a-s) t}}{(i a-s)^{2}}\right]-\frac{e^{(i a-s) t}}{(i a-s)^{3}}\right. \\ \left.-\frac{1}{i a+s}\left[t \frac{e^{-(i a+s) t}}{i a+s}+\frac{e^{-(i a+s) t}}{(i a+s)^{2}}\right]-\frac{e^{-(i a+s) t}}{(i a+s)^{3}}\right\} \\ =\frac{1}{2 i}\left[t \frac{e^{(i a-s) t}}{(i a-s)^{2}}-2 \frac{e^{(i a-s) t}}{(i a-s)^{3}}-t \frac{e^{-(i a+s) t}}{(i a+s)^{2}}-2 \frac{e^{-(i a+s) t}}{(i a+s)^{3}}\right] \end{array}



Returning back to the start and using 1 and 2, we have

limA(uv0A0Avdu)=limA{t2i[te(ias)tiase(ias)t(ias)2+te(ia+s)tia+s+e(ia+s)t(ia+s)2]0A12i[te(ias)t(ias)22e(ias)t(ias)3te(ia+s)t(ia+s)22e(ia+s)t(ia+s)3]0A}=limA{A2i[Ae(ias)Aiase(ias)A(ias)2+Ae(ia+s)Aia+s+e(ia+s)A(ia+s)2]12i[Ae(ias)A(ias)22e(ias)A(ias)3Ae(ia+s)A(ia+s)22e(ia+s)A(ia+s)3]+12i[21(ias)321(ia+s)3]}\begin{aligned}& \lim _{A \rightarrow \infty}\left(\left.u v\right|_{0} ^{A}-\int_{0}^{A} v d u\right) \\ =& \lim _{A \rightarrow \infty}\left\{\left.\frac{t}{2 i}\left[t \frac{e^{(i a-s) t}}{i a-s}-\frac{e^{(i a-s) t}}{(i a-s)^{2}}+t \frac{e^{-(i a+s) t}}{i a+s}+\frac{e^{-(i a+s) t}}{(i a+s)^{2}}\right]\right|_{0} ^{A}\right.\\ &\left.-\left.\frac{1}{2 i}\left[t \frac{e^{(i a-s) t}}{(i a-s)^{2}}-2 \frac{e^{(i a-s) t}}{(i a-s)^{3}}-t \frac{e^{-(i a+s) t}}{(i a+s)^{2}}-2 \frac{e^{-(i a+s) t}}{(i a+s)^{3}}\right]\right|_{0} ^{A}\right\} \\ =& \lim _{A \rightarrow \infty}\left\{\frac{A}{2 i}\left[\frac{A e^{(i a-s) A}}{i a-s}-\frac{e^{(i a-s) A}}{(i a-s)^{2}}+\frac{A e^{-(i a+s) A}}{i a+s}+\frac{e^{-(i a+s) A}}{(i a+s)^{2}}\right]\right.\\ &-\frac{1}{2 i}\left[\frac{A e^{(i a-s) A}}{(i a-s)^{2}}-2 \frac{e^{(i a-s) A}}{(i a-s)^{3}}-\frac{A e^{-(i a+s) A}}{(i a+s)^{2}}-2 \frac{e^{-(i a+s) A}}{(i a+s)^{3}}\right] \\ &\left.+\frac{1}{2 i}\left[-2 \frac{1}{(i a-s)^{3}}-2 \frac{1}{(i a+s)^{3}}\right]\right\} \end{aligned}


F(s)=22i[1(ias)3+1(ia+s)3]=1i(ia+s)3+(ias)3[(ias)(ia+s)]3=1iia33a2s+3ias2+s3+(ia3+3a2s+3ias2s3)(a2s2)3=1i2ia3+6ias2(a2+s2)3=2a(3s2a2)(a2+s2)3\begin{aligned} F(s) &=\frac{-2}{2 i}\left[\frac{1}{(i a-s)^{3}}+\frac{1}{(i a+s)^{3}}\right]=\frac{-1}{i} \frac{(i a+s)^{3}+(i a-s)^{3}}{[(i a-s)(i a+s)]^{3}} \\ &=\frac{-1}{i} \frac{-i a^{3}-3 a^{2} s+3 i a s^{2}+s^{3}+\left(-i a^{3}+3 a^{2} s+3 i a s^{2}-s^{3}\right)}{\left(-a^{2}-s^{2}\right)^{3}} \\ &=\frac{-1}{i} \frac{-2 i a^{3}+6 i a s^{2}}{-\left(a^{2}+s^{2}\right)^{3}}=\frac{2 a\left(3 s^{2}-a^{2}\right)}{\left(a^{2}+s^{2}\right)^{3}} \end{aligned}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment