Question #208278

Laplace transform of t2

1
Expert's answer
2021-07-16T11:16:47-0400

F(p)=0f(t)eptdt=0t2eptdt=u=t2dv=eptdtdu=2tdtv=1pept=limx(t2pept0x+2p0xteptdt)=u=tdv=eptdtdu=dtv=1pept=limx(t2pept0x+2p(tpept0x+1p0xeptdt))=limx(t2pept0x+2p(tpept0x1p2ept0x))=limx(x2pepx+02xp2epx+02p3epx+2p3e0)=0+00+00+2p3=2p3F(p) = \int\limits_0^\infty {f(t){e^{ - pt}}} dt = \int\limits_0^\infty {{t^2}{e^{ - pt}}} dt = \left| {\begin{matrix} {u = {t^2}}&{dv = {e^{ - pt}}dt}\\ {du = 2tdt}&{v = - \frac{1}{p}{e^{ - pt}}} \end{matrix}} \right| = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{{{t^2}}}{p}{e^{ - pt}}} \right|_0^x + \frac{2}{p}\int\limits_0^x {t{e^{ - pt}}} dt} \right) = \left| {\begin{matrix} {u = t}&{dv = {e^{ - pt}}dt}\\ {du = dt}&{v = - \frac{1}{p}{e^{ - pt}}} \end{matrix}} \right| = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{{{t^2}}}{p}{e^{ - pt}}} \right|_0^x + \frac{2}{p}\left( { - \left. {\frac{t}{p}{e^{ - pt}}} \right|_0^x + \frac{1}{p}\int\limits_0^x {{e^{ - pt}}} dt} \right)} \right) = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{{{t^2}}}{p}{e^{ - pt}}} \right|_0^x + \frac{2}{p}\left( { - \left. {\frac{t}{p}{e^{ - pt}}} \right|_0^x - \frac{1}{{{p^2}}}\left. {{e^{ - pt}}} \right|_0^x} \right)} \right) = \mathop {\lim }\limits_{x \to \infty } \left( { - \frac{{{x^2}}}{p}{e^{ - px}} + 0 - \frac{{2x}}{{{p^2}}}{e^{ - px}} + 0 - \frac{2}{{{p^3}}}{e^{ - px}} + \frac{2}{{{p^3}}}{e^0}} \right) = 0 + 0 - 0 + 0 - 0 + \frac{2}{{{p^3}}} = \frac{2}{{{p^3}}}

Answer: F(p)=2p3F(p) = \frac{2}{{{p^3}}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS