F(p)=0∫∞f(t)e−ptdt=0∫∞t2e−ptdt=∣∣u=t2du=2tdtdv=e−ptdtv=−p1e−pt∣∣=x→∞lim(−pt2e−pt∣∣0x+p20∫xte−ptdt)=∣∣u=tdu=dtdv=e−ptdtv=−p1e−pt∣∣=x→∞lim(−pt2e−pt∣∣0x+p2(−pte−pt∣∣0x+p10∫xe−ptdt))=x→∞lim(−pt2e−pt∣∣0x+p2(−pte−pt∣∣0x−p21e−pt∣0x))=x→∞lim(−px2e−px+0−p22xe−px+0−p32e−px+p32e0)=0+0−0+0−0+p32=p32
Answer: F(p)=p32
Comments