F ( p ) = ∫ 0 ∞ f ( t ) e − p t d t = ∫ 0 ∞ t 2 e − p t d t = ∣ u = t 2 d v = e − p t d t d u = 2 t d t v = − 1 p e − p t ∣ = lim x → ∞ ( − t 2 p e − p t ∣ 0 x + 2 p ∫ 0 x t e − p t d t ) = ∣ u = t d v = e − p t d t d u = d t v = − 1 p e − p t ∣ = lim x → ∞ ( − t 2 p e − p t ∣ 0 x + 2 p ( − t p e − p t ∣ 0 x + 1 p ∫ 0 x e − p t d t ) ) = lim x → ∞ ( − t 2 p e − p t ∣ 0 x + 2 p ( − t p e − p t ∣ 0 x − 1 p 2 e − p t ∣ 0 x ) ) = lim x → ∞ ( − x 2 p e − p x + 0 − 2 x p 2 e − p x + 0 − 2 p 3 e − p x + 2 p 3 e 0 ) = 0 + 0 − 0 + 0 − 0 + 2 p 3 = 2 p 3 F(p) = \int\limits_0^\infty {f(t){e^{ - pt}}} dt = \int\limits_0^\infty {{t^2}{e^{ - pt}}} dt = \left| {\begin{matrix}
{u = {t^2}}&{dv = {e^{ - pt}}dt}\\
{du = 2tdt}&{v = - \frac{1}{p}{e^{ - pt}}}
\end{matrix}} \right| = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{{{t^2}}}{p}{e^{ - pt}}} \right|_0^x + \frac{2}{p}\int\limits_0^x {t{e^{ - pt}}} dt} \right) = \left| {\begin{matrix}
{u = t}&{dv = {e^{ - pt}}dt}\\
{du = dt}&{v = - \frac{1}{p}{e^{ - pt}}}
\end{matrix}} \right| = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{{{t^2}}}{p}{e^{ - pt}}} \right|_0^x + \frac{2}{p}\left( { - \left. {\frac{t}{p}{e^{ - pt}}} \right|_0^x + \frac{1}{p}\int\limits_0^x {{e^{ - pt}}} dt} \right)} \right) = \mathop {\lim }\limits_{x \to \infty } \left( { - \left. {\frac{{{t^2}}}{p}{e^{ - pt}}} \right|_0^x + \frac{2}{p}\left( { - \left. {\frac{t}{p}{e^{ - pt}}} \right|_0^x - \frac{1}{{{p^2}}}\left. {{e^{ - pt}}} \right|_0^x} \right)} \right) = \mathop {\lim }\limits_{x \to \infty } \left( { - \frac{{{x^2}}}{p}{e^{ - px}} + 0 - \frac{{2x}}{{{p^2}}}{e^{ - px}} + 0 - \frac{2}{{{p^3}}}{e^{ - px}} + \frac{2}{{{p^3}}}{e^0}} \right) = 0 + 0 - 0 + 0 - 0 + \frac{2}{{{p^3}}} = \frac{2}{{{p^3}}} F ( p ) = 0 ∫ ∞ f ( t ) e − pt d t = 0 ∫ ∞ t 2 e − pt d t = ∣ ∣ u = t 2 d u = 2 t d t d v = e − pt d t v = − p 1 e − pt ∣ ∣ = x → ∞ lim ( − p t 2 e − pt ∣ ∣ 0 x + p 2 0 ∫ x t e − pt d t ) = ∣ ∣ u = t d u = d t d v = e − pt d t v = − p 1 e − pt ∣ ∣ = x → ∞ lim ( − p t 2 e − pt ∣ ∣ 0 x + p 2 ( − p t e − pt ∣ ∣ 0 x + p 1 0 ∫ x e − pt d t ) ) = x → ∞ lim ( − p t 2 e − pt ∣ ∣ 0 x + p 2 ( − p t e − pt ∣ ∣ 0 x − p 2 1 e − pt ∣ 0 x ) ) = x → ∞ lim ( − p x 2 e − p x + 0 − p 2 2 x e − p x + 0 − p 3 2 e − p x + p 3 2 e 0 ) = 0 + 0 − 0 + 0 − 0 + p 3 2 = p 3 2
Answer: F ( p ) = 2 p 3 F(p) = \frac{2}{{{p^3}}} F ( p ) = p 3 2
Comments