Apply Young's theorem to justify that
fxy(1,1)= fyx(1,1)
for the function f: R^2 to R , defined by
f(x,y) = | x+ y|
The function f(x, y) is defined in a neighborhood of a point
The partial derivatives are defined in a neighborhood of and are differentiable at
in a neighborhood of
We see that in accordance with the Young's theorem.
Comments
Leave a comment