Find the derivative of the fun
tion
f(x) = 15 − x
√
6x + 1 +
x
1 + x
.
[1℄ − √
9x+1
6x+1 +
1
(1+x)
2
[2℄ − √
3x
6x + 1 + 1
[3℄ √
6x+1 + 1
[4℄ √
1−2x
Solution.
f(x)=15−x6x+1+x(1+x)f(x)=15-x\sqrt{6x+1}+x(1+x)f(x)=15−x6x+1+x(1+x)
Thenf′(x)=−6x+1−6x26x+1+1+x+x=−6x+1−3x6x+1+1+2x.f'(x)=-\sqrt{6x+1}-\frac{6x}{2\sqrt{6x+1}}+1+x+x=\newline -\sqrt{6x+1}-\frac{3x}{\sqrt{6x+1}}+1+2x.f′(x)=−6x+1−26x+16x+1+x+x=−6x+1−6x+13x+1+2x.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments