Bonnet Mean Value Theorem .
Suppose f f f is Lebesgue integrable on [ a , b ] [a, b] [ a , b ] and g : [ a , b ] → R g:[a,b]\to\R g : [ a , b ] → R is monotone.
i) If g g g is non-negative, decreasing and greater than or equal to 0 , 0, 0 , for A ∈ R , A\in \R, A ∈ R , A ≥ lim x → a + g ( x ) A\geq \lim\limits_{x\to a^{+}}g(x) A ≥ x → a + lim g ( x ) there exists C C C such that a ≤ C ≤ b a\leq C\leq b a ≤ C ≤ b and
∫ a b f ( x ) g ( x ) d x = A ∫ a C f ( x ) d x \displaystyle\int_{a}^{b}f(x)g(x)dx=A\displaystyle\int_{a}^{C}f(x)dx ∫ a b f ( x ) g ( x ) d x = A ∫ a C f ( x ) d x
ii) If g g g is non-negative, increasing and greater than or equal to 0 , 0, 0 , for B ∈ R , B\in \R, B ∈ R , A ≥ lim x → b − g ( x ) A\geq \lim\limits_{x\to b^{-}}g(x) A ≥ x → b − lim g ( x ) there exists C C C such that a ≤ C ≤ b a\leq C\leq b a ≤ C ≤ b and
∫ a b f ( x ) g ( x ) d x = B ∫ C b f ( x ) d x \displaystyle\int_{a}^{b}f(x)g(x)dx=B\displaystyle\int_{C}^{b}f(x)dx ∫ a b f ( x ) g ( x ) d x = B ∫ C b f ( x ) d x Consider
∫ 3 5 1 x cos x d x \displaystyle\int_{3}^{5}\dfrac{1}{x}\cos xdx ∫ 3 5 x 1 cos x d x The function f ( x ) = cos x f(x)=\cos x f ( x ) = cos x is integrable on [ 3 , 5 ] . [3, 5]. [ 3 , 5 ] .
The function g ( x ) = 1 x g(x)=\dfrac{1}{x} g ( x ) = x 1 is non-negative, monotone decreasing on [ 3 , 5 ] . [3, 5]. [ 3 , 5 ] .
Then by the Bonnet Mean Value Theorem, for A ≥ lim x → 3 + 1 x A\geq \lim\limits_{x\to 3^{+}}\dfrac{1}{x} A ≥ x → 3 + lim x 1 there exists C C C such that 3 ≤ C ≤ 5 3\leq C\leq 5 3 ≤ C ≤ 5 and
∫ 3 5 1 x cos x d x = A ∫ 3 C cos x d x \displaystyle\int_{3}^{5}\dfrac{1}{x}\cos xdx=A\displaystyle\int_{3}^{C}\cos xdx ∫ 3 5 x 1 cos x d x = A ∫ 3 C cos x d x Let A = 1 3 A=\dfrac{1}{3} A = 3 1
∣ ∫ 3 5 1 x cos x d x ∣ = 1 3 ∣ ∫ 3 C cos x d x ∣ \bigg|\displaystyle\int_{3}^{5}\dfrac{1}{x}\cos xdx\bigg|=\dfrac{1}{3}\bigg|\displaystyle\int_{3}^{C}\cos xdx\bigg| ∣ ∣ ∫ 3 5 x 1 cos x d x ∣ ∣ = 3 1 ∣ ∣ ∫ 3 C cos x d x ∣ ∣
= 1 3 ∣ [ sin x ] ∣ 5 3 ≤ 1 3 ( 2 ) = 2 3 =\dfrac{1}{3}\big|[\sin x]\big|\begin{matrix}
5 \\
3
\end{matrix}\leq\dfrac{1}{3}(2)=\dfrac{2}{3} = 3 1 ∣ ∣ [ sin x ] ∣ ∣ 5 3 ≤ 3 1 ( 2 ) = 3 2 Therefore
∣ ∫ 3 5 1 x cos x d x ∣ ≤ 2 3 \bigg|\displaystyle\int_{3}^{5}\dfrac{1}{x}\cos xdx\bigg|\leq\dfrac{2}{3} ∣ ∣ ∫ 3 5 x 1 cos x d x ∣ ∣ ≤ 3 2
Comments