Question #207583

State Bonnet’s mean value theorem for integrals. Apply it to show that:

|35 cosxdx/x|≤ 2/3



1
Expert's answer
2021-06-16T17:25:52-0400

Bonnet Mean Value Theorem .

Suppose ff is Lebesgue integrable on [a,b][a, b] and g:[a,b]Rg:[a,b]\to\R is monotone. 

i) If gg is non-negative, decreasing and greater than or equal to 0,0, for AR,A\in \R, Alimxa+g(x)A\geq \lim\limits_{x\to a^{+}}g(x) there exists CC such that aCba\leq C\leq b and


abf(x)g(x)dx=AaCf(x)dx\displaystyle\int_{a}^{b}f(x)g(x)dx=A\displaystyle\int_{a}^{C}f(x)dx

ii) If gg is non-negative, increasing and greater than or equal to 0,0, for BR,B\in \R, Alimxbg(x)A\geq \lim\limits_{x\to b^{-}}g(x) there exists CC such that aCba\leq C\leq b and


abf(x)g(x)dx=BCbf(x)dx\displaystyle\int_{a}^{b}f(x)g(x)dx=B\displaystyle\int_{C}^{b}f(x)dx

Consider


351xcosxdx\displaystyle\int_{3}^{5}\dfrac{1}{x}\cos xdx

The function f(x)=cosxf(x)=\cos x is integrable on [3,5].[3, 5].

The function g(x)=1xg(x)=\dfrac{1}{x} is non-negative, monotone decreasing on [3,5].[3, 5].

Then by the Bonnet Mean Value Theorem, for Alimx3+1xA\geq \lim\limits_{x\to 3^{+}}\dfrac{1}{x} there exists CC such that 3C53\leq C\leq 5 and


351xcosxdx=A3Ccosxdx\displaystyle\int_{3}^{5}\dfrac{1}{x}\cos xdx=A\displaystyle\int_{3}^{C}\cos xdx

Let A=13A=\dfrac{1}{3}


351xcosxdx=133Ccosxdx\bigg|\displaystyle\int_{3}^{5}\dfrac{1}{x}\cos xdx\bigg|=\dfrac{1}{3}\bigg|\displaystyle\int_{3}^{C}\cos xdx\bigg|

=13[sinx]5313(2)=23=\dfrac{1}{3}\big|[\sin x]\big|\begin{matrix} 5 \\ 3 \end{matrix}\leq\dfrac{1}{3}(2)=\dfrac{2}{3}

Therefore


351xcosxdx23\bigg|\displaystyle\int_{3}^{5}\dfrac{1}{x}\cos xdx\bigg|\leq\dfrac{2}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS