Find the number “ c ” that satisfy the Mean Value Theorem (M.V.T) on the given
intervals.
(a) f(x)= e-x , [0, 2]
(b) f(x)= x/(x+2), (1,
By mean value theorem,
"\\text{ There exists} c\\in [a,b].\\\\\nf'(c)=\\frac{f(b)-f(a)}{b-a}\\\\\na)\nf=e^{-x}\\\\\nf'=-e^{-x}\\\\\n\\text{Then, by MVT}\\\\\nf'(c)=\\frac{f(2)-f(0)}{2-0}\\\\\n-e^{-c}=\\frac{e^{-2}-1}{2-0}\\\\\n-e^{-c}=-0.43\\\\\n-c=ln(0.43)\\\\\nc=0.84\\in [0,2].\\\\\nb)\\\\\nf=\\frac{x}{x+2}\\\\\nf'=\\frac{2}{(x+2)^2}\\\\\n\\text{Then, by MVT}\\\\\nf'(c)=\\frac{f(2)-f(1)}{2-1}\\\\\n\\frac{2}{(c+2)^2}=\\frac{\\frac{1}{2}\n-\\frac{1}{3}}{2-1}\\\\\n\\frac{2}{(c+2)^2}=\\frac{1}{6}\\\\\n(c+2)^2=12\\\\\nc+2=2\\sqrt3\\\\\nc=2\\sqrt3-2\\\\\nc=1.46\\in (1,2)"
Comments
Leave a comment