Question #207280

Find the number “ c ” that satisfy the Mean Value Theorem (M.V.T) on the given

intervals.

(a) f(x)= e-x , [0, 2]

(b) f(x)= x/(x+2), (1,


1
Expert's answer
2021-06-17T17:43:05-0400

By mean value theorem,

 There existsc[a,b].f(c)=f(b)f(a)baa)f=exf=exThen, by MVTf(c)=f(2)f(0)20ec=e2120ec=0.43c=ln(0.43)c=0.84[0,2].b)f=xx+2f=2(x+2)2Then, by MVTf(c)=f(2)f(1)212(c+2)2=1213212(c+2)2=16(c+2)2=12c+2=23c=232c=1.46(1,2)\text{ There exists} c\in [a,b].\\ f'(c)=\frac{f(b)-f(a)}{b-a}\\ a) f=e^{-x}\\ f'=-e^{-x}\\ \text{Then, by MVT}\\ f'(c)=\frac{f(2)-f(0)}{2-0}\\ -e^{-c}=\frac{e^{-2}-1}{2-0}\\ -e^{-c}=-0.43\\ -c=ln(0.43)\\ c=0.84\in [0,2].\\ b)\\ f=\frac{x}{x+2}\\ f'=\frac{2}{(x+2)^2}\\ \text{Then, by MVT}\\ f'(c)=\frac{f(2)-f(1)}{2-1}\\ \frac{2}{(c+2)^2}=\frac{\frac{1}{2} -\frac{1}{3}}{2-1}\\ \frac{2}{(c+2)^2}=\frac{1}{6}\\ (c+2)^2=12\\ c+2=2\sqrt3\\ c=2\sqrt3-2\\ c=1.46\in (1,2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS