Let f: R^2 to R be a function defined by
f(x,y,z) = { 1/(x-1) + 1/(y-1)+1/(z-1);
x≠1,y≠1,z≠1
{ 0 ; Otherwise
Calculate fxz(1,1,1)
Given f(x,y,z) = "\\frac{1}{x-1} + \\frac{1}{y-1} +\\frac{1}{z-1}" for "x\\neq 1, y\\neq 1, z\\neq 1" and otherwise f(x,y,z) = 0
fx(x,y,z) = "\\frac{\\delta}{\\delta x}(\\frac{1}{x-1} + \\frac{1}{y-1} +\\frac{1}{z-1} )"
fx(x,y,z) = "\\frac{-1}{(x-1)^2}"
fxz(x,y,z) = "\\frac{\\delta}{\\delta z}" fx(x,y,z) = "\\frac{\\delta}{\\delta z}" "(\\frac{-1}{(x-1)^2})" = 0
therefore,
"\\implies" fxz(x,y,z) = 0 for all (x,y,z) "\\in" R3
hence,
fxz(1,1,1) = 0
Comments
Leave a comment