Question #207663

Let f: R^2 to R be a function defined by

f(x,y,z) = { 1/(x-1) + 1/(y-1)+1/(z-1);

x≠1,y≠1,z≠1

{ 0 ; Otherwise

Calculate fxz(1,1,1)


1
Expert's answer
2021-06-17T12:26:50-0400

Given f(x,y,z) = 1x1+1y1+1z1\frac{1}{x-1} + \frac{1}{y-1} +\frac{1}{z-1}  for x1,y1,z1x\neq 1, y\neq 1, z\neq 1 and otherwise f(x,y,z) = 0

fx(x,y,z) = δδx(1x1+1y1+1z1)\frac{\delta}{\delta x}(\frac{1}{x-1} + \frac{1}{y-1} +\frac{1}{z-1} )


fx(x,y,z) = 1(x1)2\frac{-1}{(x-1)^2}


fxz(x,y,z) = δδz\frac{\delta}{\delta z} fx(x,y,z) = δδz\frac{\delta}{\delta z} (1(x1)2)(\frac{-1}{(x-1)^2}) = 0

therefore,

    \implies fxz(x,y,z) = 0 for all (x,y,z) \in R3

hence,

fxz(1,1,1) = 0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS