integrate the following with respect to x up to a constant C:
"1) \\int (5x^4 - 4x^3 +2x-3)\\,dx =x^5 - x^4+x^2-3x +C \\\\\n2) \\int (3\\sin(x)-2\\cos(x))\\,dx =-3\\cos(x)-2\\sin(x) +C\\\\\n3) \\int (x^3+x)\\cos(5x)\\,dx= \\\\ = (x^3+x)\\frac{1}{5}\\sin(5x)-\\int\\frac{1}{5}(3x^2+1)\\sin(5x)\\,dx =\\\\\n= (x^3+x)\\frac{1}{5}\\sin(5x) + \\frac{1}{25}(3x^2+1)\\cos(5x)-\\frac{1}{25}\\int6x\\cos(5x)\\,dx=\\\\\n=(x^3+x)\\frac{1}{5}\\sin(5x) + \\frac{1}{25}(3x^2+1)\\cos(5x)-\\frac{1}{125}6x\\sin(5x)+\\\\+\\frac{6}{5}\\int\\sin(5x)\\,dx=(x^3+x)\\frac{1}{5}\\sin(5x) + \\frac{1}{25}(3x^2+1)\\cos(5x)-\\\\\n-\\frac{1}{125}6x\\sin(5x)-\\frac{6}{625}\\cos(5x)+C = \\\\\n=(\\frac{x^3}{5}+\\frac{19x}{125})\\sin(5x)+(\\frac{3x^2}{25}+\\frac{19}{625})\\cos(5x)+C\\\\\n4)\\int(e^{2x}+\\sin(3x))\\,dx=\\frac{1}{2}e^{2x}-\\frac{1}{3}\\cos(3x)+C"
Comments
Leave a comment