1)∫(5x4−4x3+2x−3)dx=x5−x4+x2−3x+C2)∫(3sin(x)−2cos(x))dx=−3cos(x)−2sin(x)+C3)∫(x3+x)cos(5x)dx==(x3+x)51sin(5x)−∫51(3x2+1)sin(5x)dx==(x3+x)51sin(5x)+251(3x2+1)cos(5x)−251∫6xcos(5x)dx==(x3+x)51sin(5x)+251(3x2+1)cos(5x)−12516xsin(5x)++56∫sin(5x)dx=(x3+x)51sin(5x)+251(3x2+1)cos(5x)−−12516xsin(5x)−6256cos(5x)+C==(5x3+12519x)sin(5x)+(253x2+62519)cos(5x)+C4)∫(e2x+sin(3x))dx=21e2x−31cos(3x)+C
Comments