Find the absolute extrema of the function on the indicated
interval
1. π(π‘) = 2 sec 1/2 π‘ ; [ β1/3π,1/2π ]
2. π(π₯) = π₯Β³ + 3π₯Β² β 9π₯ ; [β4, 4]
3. π(π₯) = π₯Β³ + 5π₯ β 4 ; [ β3, β1 ]
4. β(π₯) = (π₯ β 3)^1/3 + 4 ; [ 0, 2 ]
5. π(π‘) = 3 cos 2π‘ ; [ 1/6π,3/4π ]
Solution.
1.
"g(t)=2\\sec{\\frac{1}{2}t}, [-\\frac{1}{3}\u03c0,\\frac{1}{2}\u03c0]."
We find the critical point of g. To do so, take the derivative:
"g'(t)=\\sec{\\frac{t}{2}}\\tan{\\frac{t}{2}}."
Then "g'(t)=0" when"\\sec{\\frac{t}{2}}\\tan{\\frac{t}{2}}=0,\\newline\n\\sec{\\frac{t}{2}}=0\\text{ or \n }\\tan{\\frac{t}{2}}=0,\\newline\nt=2\u03c0k, k\\in Z."
"t=0 \\in [-\\frac{1}{3}\u03c0,\\frac{1}{2}\u03c0]."
Evaluate g at the critical points and on the endpoints of the interval:
"g(0)=2,\\newline\ng(-\\frac{1}{3}\u03c0)=2\\frac{1}{\\cos{\\frac{\u03c0}{6}}}=\\frac{4}{\\sqrt{3}},\\newline\ng(\\frac{1}{2}\u03c0)=2\\frac{1}{\\cos{\\frac{\u03c0}{4}}}=\\frac{4}{\\sqrt{2}}."
Therefore, g achieves its absolute minimum of 2 at t=0 and its absolute maximum of "\\frac{4}{\\sqrt{2}}" at "t=\\frac{1}{2}\u03c0." .
2.
"g(x)=x^3+3x^2-9x, [-4,4]."
We find the critical point of g. To do so, take the derivative:
"g'(x)=3x^2+6x-9."
Then "g'(x)=0" when"3x^2+6x-9=0,\\newline\nx^2+2x-3=0,\\newline\nx=-3, \\text{or } x=1."
Evaluate g at the critical points and on the endpoints of the interval:
"g(-3)=-27+27+27=27,\\newline\ng(1)=1+3-9=-5,\\newline\ng(-4)=-64+48+36=20,\\newline\ng(4)=64+48-36=76."
Therefore, g achieves its absolute minimum of -5 at x=1 and its absolute maximum of 76 at x=4.
3.
"f(x)=x^3+5x-4, [-3,-1]."
We find the critical point of f. To do so, take the derivative:
"f'(x)=3x^2+5."
Then "f'(x)=0" when"3x^2+5=0,\\newline\nx^2=-\\frac{5}{3},\\newline\nx\\in \\varnothing."
Evaluate f only on the endpoints of the interval:
"f(-3)=-27+15-4=-16,\\newline\nf(-1)=-1+5-4=0.\\newline"
Therefore, f achieves its absolute minimum of -16 at x=-3 and its absolute maximum of 0 at x=-1.
4.
"h(x)=(x-3)^{\\frac{1}{3}}+4, [0,2]."
We find the critical point of h. To do so, take the derivative:
"h'(x)=\\frac{1}{3}(x-3)^{-\\frac{2}{3}}."
Then "h'(x)=0" when"\\frac{1}{3}(x-3)^{-\\frac{2}{3}}=0,\\newline\nx=3."
Evaluate h at the critical points and on the endpoints of the interval:
"h(3)=4,\\newline\nh(0)=-\\sqrt[3]{3}+4,\\newline\nh(2)=-\\sqrt[3]{1}+4=3.\\newline"
Therefore, h achieves its absolute minimum of "-\\sqrt[3]{3}+4" at x=0 and its absolute maximum of 4 at x=3.
5.
"f(t)=3\\cos{2t}, [\\frac{1}{6}\u03c0,\\frac{3}{4}\u03c0]."
We find the critical point of f. To do so, take the derivative:
"f'(x)=-6\\sin{2t}."
Then "f'(x)=0" when"-6\\sin{2t}=0,\\newline\n\\sin{2t}=0,\\newline\nt=\\frac{\u03c0k}{2}, k\\in Z."
"t=\\frac{\u03c0}{2}\\in [\\frac{1}{6}\u03c0,\\frac{3}{4}\u03c0]."
Evaluate f at the critical points and on the endpoints of the interval:
"f(\\frac{\u03c0}{6})=3\\cos{\\frac{\u03c0}{3}}=1.5,\\newline\nf(\\frac{3\u03c0}{4})=3\\cos{\\frac{3\u03c0}{2}}=0,\\newline\nf(\\frac{\u03c0}{2})=3\\cos{\u03c0}=-3.\\newline"
Therefore, f achieves its absolute minimum of -3 at "t=\\frac{\u03c0}{2}," and its absolute maximum of 1.5 at "t=\\frac{\u03c0}{6}."
Comments
Leave a comment