Solution.
1.
g(t)=2sec21t,[−31π,21π].
We find the critical point of g. To do so, take the derivative:
g′(t)=sec2ttan2t.
Then g′(t)=0 whensec2ttan2t=0,sec2t=0 or tan2t=0,t=2πk,k∈Z.
t=0∈[−31π,21π].
Evaluate g at the critical points and on the endpoints of the interval:
g(0)=2,g(−31π)=2cos6π1=34,g(21π)=2cos4π1=24.
Therefore, g achieves its absolute minimum of 2 at t=0 and its absolute maximum of 24 at t=21π. .
2.
g(x)=x3+3x2−9x,[−4,4].
We find the critical point of g. To do so, take the derivative:
g′(x)=3x2+6x−9.
Then g′(x)=0 when3x2+6x−9=0,x2+2x−3=0,x=−3,or x=1.
Evaluate g at the critical points and on the endpoints of the interval:
g(−3)=−27+27+27=27,g(1)=1+3−9=−5,g(−4)=−64+48+36=20,g(4)=64+48−36=76.
Therefore, g achieves its absolute minimum of -5 at x=1 and its absolute maximum of 76 at x=4.
3.
f(x)=x3+5x−4,[−3,−1].
We find the critical point of f. To do so, take the derivative:
f′(x)=3x2+5.
Then f′(x)=0 when3x2+5=0,x2=−35,x∈∅.
Evaluate f only on the endpoints of the interval:
f(−3)=−27+15−4=−16,f(−1)=−1+5−4=0.
Therefore, f achieves its absolute minimum of -16 at x=-3 and its absolute maximum of 0 at x=-1.
4.
h(x)=(x−3)31+4,[0,2].
We find the critical point of h. To do so, take the derivative:
h′(x)=31(x−3)−32.
Then h′(x)=0 when31(x−3)−32=0,x=3.
Evaluate h at the critical points and on the endpoints of the interval:
h(3)=4,h(0)=−33+4,h(2)=−31+4=3.
Therefore, h achieves its absolute minimum of −33+4 at x=0 and its absolute maximum of 4 at x=3.
5.
f(t)=3cos2t,[61π,43π].
We find the critical point of f. To do so, take the derivative:
f′(x)=−6sin2t.
Then f′(x)=0 when−6sin2t=0,sin2t=0,t=2πk,k∈Z.
t=2π∈[61π,43π].
Evaluate f at the critical points and on the endpoints of the interval:
f(6π)=3cos3π=1.5,f(43π)=3cos23π=0,f(2π)=3cosπ=−3.
Therefore, f achieves its absolute minimum of -3 at t=2π, and its absolute maximum of 1.5 at t=6π.
Comments