Question #208340

Find the absolute extrema of the function on the indicated

interval


1. 𝑔(𝑡) = 2 sec 1/2 𝑡 ; [ −1/3𝜋,1/2𝜋 ]


2. 𝑔(𝑥) = 𝑥³ + 3𝑥² − 9𝑥 ; [−4, 4]


3. 𝑓(𝑥) = 𝑥³ + 5𝑥 − 4 ; [ −3, −1 ]


4. ℎ(𝑥) = (𝑥 − 3)^1/3 + 4 ; [ 0, 2 ]


5. 𝑓(𝑡) = 3 cos 2𝑡 ; [ 1/6𝜋,3/4𝜋 ]


1
Expert's answer
2021-06-21T06:12:47-0400

Solution.

1.

g(t)=2sec12t,[13π,12π].g(t)=2\sec{\frac{1}{2}t}, [-\frac{1}{3}π,\frac{1}{2}π].

We find the critical point of g. To do so, take the derivative:

g(t)=sect2tant2.g'(t)=\sec{\frac{t}{2}}\tan{\frac{t}{2}}.

Then g(t)=0g'(t)=0 whensect2tant2=0,sect2=0 or tant2=0,t=2πk,kZ.\sec{\frac{t}{2}}\tan{\frac{t}{2}}=0,\newline \sec{\frac{t}{2}}=0\text{ or }\tan{\frac{t}{2}}=0,\newline t=2πk, k\in Z.

t=0[13π,12π].t=0 \in [-\frac{1}{3}π,\frac{1}{2}π].

Evaluate g at the critical points and on the endpoints of the interval:

g(0)=2,g(13π)=21cosπ6=43,g(12π)=21cosπ4=42.g(0)=2,\newline g(-\frac{1}{3}π)=2\frac{1}{\cos{\frac{π}{6}}}=\frac{4}{\sqrt{3}},\newline g(\frac{1}{2}π)=2\frac{1}{\cos{\frac{π}{4}}}=\frac{4}{\sqrt{2}}.

Therefore, g achieves its absolute minimum of 2 at t=0 and its absolute maximum of 42\frac{4}{\sqrt{2}} at t=12π.t=\frac{1}{2}π. .

2.

g(x)=x3+3x29x,[4,4].g(x)=x^3+3x^2-9x, [-4,4].

We find the critical point of g. To do so, take the derivative:

g(x)=3x2+6x9.g'(x)=3x^2+6x-9.

Then g(x)=0g'(x)=0 when3x2+6x9=0,x2+2x3=0,x=3,or x=1.3x^2+6x-9=0,\newline x^2+2x-3=0,\newline x=-3, \text{or } x=1.

Evaluate g at the critical points and on the endpoints of the interval:

g(3)=27+27+27=27,g(1)=1+39=5,g(4)=64+48+36=20,g(4)=64+4836=76.g(-3)=-27+27+27=27,\newline g(1)=1+3-9=-5,\newline g(-4)=-64+48+36=20,\newline g(4)=64+48-36=76.

Therefore, g achieves its absolute minimum of -5 at x=1 and its absolute maximum of 76 at x=4.

3.

f(x)=x3+5x4,[3,1].f(x)=x^3+5x-4, [-3,-1].

We find the critical point of f. To do so, take the derivative:

f(x)=3x2+5.f'(x)=3x^2+5.

Then f(x)=0f'(x)=0 when3x2+5=0,x2=53,x.3x^2+5=0,\newline x^2=-\frac{5}{3},\newline x\in \varnothing.

Evaluate f only on the endpoints of the interval:

f(3)=27+154=16,f(1)=1+54=0.f(-3)=-27+15-4=-16,\newline f(-1)=-1+5-4=0.\newline

Therefore, f achieves its absolute minimum of -16 at x=-3 and its absolute maximum of 0 at x=-1.

4.

h(x)=(x3)13+4,[0,2].h(x)=(x-3)^{\frac{1}{3}}+4, [0,2].

We find the critical point of h. To do so, take the derivative:

h(x)=13(x3)23.h'(x)=\frac{1}{3}(x-3)^{-\frac{2}{3}}.

Then h(x)=0h'(x)=0 when13(x3)23=0,x=3.\frac{1}{3}(x-3)^{-\frac{2}{3}}=0,\newline x=3.

Evaluate h at the critical points and on the endpoints of the interval:

h(3)=4,h(0)=33+4,h(2)=13+4=3.h(3)=4,\newline h(0)=-\sqrt[3]{3}+4,\newline h(2)=-\sqrt[3]{1}+4=3.\newline

Therefore, h achieves its absolute minimum of 33+4-\sqrt[3]{3}+4 at x=0 and its absolute maximum of 4 at x=3.

5.

f(t)=3cos2t,[16π,34π].f(t)=3\cos{2t}, [\frac{1}{6}π,\frac{3}{4}π].

We find the critical point of f. To do so, take the derivative:

f(x)=6sin2t.f'(x)=-6\sin{2t}.

Then f(x)=0f'(x)=0 when6sin2t=0,sin2t=0,t=πk2,kZ.-6\sin{2t}=0,\newline \sin{2t}=0,\newline t=\frac{πk}{2}, k\in Z.

t=π2[16π,34π].t=\frac{π}{2}\in [\frac{1}{6}π,\frac{3}{4}π].

Evaluate f at the critical points and on the endpoints of the interval:

f(π6)=3cosπ3=1.5,f(3π4)=3cos3π2=0,f(π2)=3cosπ=3.f(\frac{π}{6})=3\cos{\frac{π}{3}}=1.5,\newline f(\frac{3π}{4})=3\cos{\frac{3π}{2}}=0,\newline f(\frac{π}{2})=3\cos{π}=-3.\newline

Therefore, f achieves its absolute minimum of -3 at t=π2,t=\frac{π}{2}, and its absolute maximum of 1.5 at t=π6.t=\frac{π}{6}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS