Solution.
1.
g ( t ) = 2 sec 1 2 t , [ − 1 3 π , 1 2 π ] . g(t)=2\sec{\frac{1}{2}t}, [-\frac{1}{3}π,\frac{1}{2}π]. g ( t ) = 2 sec 2 1 t , [ − 3 1 π , 2 1 π ] .
We find the critical point of g. To do so, take the derivative:
g ′ ( t ) = sec t 2 tan t 2 . g'(t)=\sec{\frac{t}{2}}\tan{\frac{t}{2}}. g ′ ( t ) = sec 2 t tan 2 t .
Then g ′ ( t ) = 0 g'(t)=0 g ′ ( t ) = 0 whensec t 2 tan t 2 = 0 , sec t 2 = 0 or tan t 2 = 0 , t = 2 π k , k ∈ Z . \sec{\frac{t}{2}}\tan{\frac{t}{2}}=0,\newline
\sec{\frac{t}{2}}=0\text{ or
}\tan{\frac{t}{2}}=0,\newline
t=2πk, k\in Z. sec 2 t tan 2 t = 0 , sec 2 t = 0 or tan 2 t = 0 , t = 2 πk , k ∈ Z .
t = 0 ∈ [ − 1 3 π , 1 2 π ] . t=0 \in [-\frac{1}{3}π,\frac{1}{2}π]. t = 0 ∈ [ − 3 1 π , 2 1 π ] .
Evaluate g at the critical points and on the endpoints of the interval:
g ( 0 ) = 2 , g ( − 1 3 π ) = 2 1 cos π 6 = 4 3 , g ( 1 2 π ) = 2 1 cos π 4 = 4 2 . g(0)=2,\newline
g(-\frac{1}{3}π)=2\frac{1}{\cos{\frac{π}{6}}}=\frac{4}{\sqrt{3}},\newline
g(\frac{1}{2}π)=2\frac{1}{\cos{\frac{π}{4}}}=\frac{4}{\sqrt{2}}. g ( 0 ) = 2 , g ( − 3 1 π ) = 2 c o s 6 π 1 = 3 4 , g ( 2 1 π ) = 2 c o s 4 π 1 = 2 4 .
Therefore, g achieves its absolute minimum of 2 at t=0 and its absolute maximum of 4 2 \frac{4}{\sqrt{2}} 2 4 at t = 1 2 π . t=\frac{1}{2}π. t = 2 1 π . .
2.
g ( x ) = x 3 + 3 x 2 − 9 x , [ − 4 , 4 ] . g(x)=x^3+3x^2-9x, [-4,4]. g ( x ) = x 3 + 3 x 2 − 9 x , [ − 4 , 4 ] .
We find the critical point of g. To do so, take the derivative:
g ′ ( x ) = 3 x 2 + 6 x − 9. g'(x)=3x^2+6x-9. g ′ ( x ) = 3 x 2 + 6 x − 9.
Then g ′ ( x ) = 0 g'(x)=0 g ′ ( x ) = 0 when3 x 2 + 6 x − 9 = 0 , x 2 + 2 x − 3 = 0 , x = − 3 , or x = 1. 3x^2+6x-9=0,\newline
x^2+2x-3=0,\newline
x=-3, \text{or } x=1. 3 x 2 + 6 x − 9 = 0 , x 2 + 2 x − 3 = 0 , x = − 3 , or x = 1.
Evaluate g at the critical points and on the endpoints of the interval:
g ( − 3 ) = − 27 + 27 + 27 = 27 , g ( 1 ) = 1 + 3 − 9 = − 5 , g ( − 4 ) = − 64 + 48 + 36 = 20 , g ( 4 ) = 64 + 48 − 36 = 76. g(-3)=-27+27+27=27,\newline
g(1)=1+3-9=-5,\newline
g(-4)=-64+48+36=20,\newline
g(4)=64+48-36=76. g ( − 3 ) = − 27 + 27 + 27 = 27 , g ( 1 ) = 1 + 3 − 9 = − 5 , g ( − 4 ) = − 64 + 48 + 36 = 20 , g ( 4 ) = 64 + 48 − 36 = 76.
Therefore, g achieves its absolute minimum of -5 at x=1 and its absolute maximum of 76 at x=4.
3.
f ( x ) = x 3 + 5 x − 4 , [ − 3 , − 1 ] . f(x)=x^3+5x-4, [-3,-1]. f ( x ) = x 3 + 5 x − 4 , [ − 3 , − 1 ] .
We find the critical point of f. To do so, take the derivative:
f ′ ( x ) = 3 x 2 + 5. f'(x)=3x^2+5. f ′ ( x ) = 3 x 2 + 5.
Then f ′ ( x ) = 0 f'(x)=0 f ′ ( x ) = 0 when3 x 2 + 5 = 0 , x 2 = − 5 3 , x ∈ ∅ . 3x^2+5=0,\newline
x^2=-\frac{5}{3},\newline
x\in \varnothing. 3 x 2 + 5 = 0 , x 2 = − 3 5 , x ∈ ∅ .
Evaluate f only on the endpoints of the interval:
f ( − 3 ) = − 27 + 15 − 4 = − 16 , f ( − 1 ) = − 1 + 5 − 4 = 0. f(-3)=-27+15-4=-16,\newline
f(-1)=-1+5-4=0.\newline f ( − 3 ) = − 27 + 15 − 4 = − 16 , f ( − 1 ) = − 1 + 5 − 4 = 0.
Therefore, f achieves its absolute minimum of -16 at x=-3 and its absolute maximum of 0 at x=-1.
4.
h ( x ) = ( x − 3 ) 1 3 + 4 , [ 0 , 2 ] . h(x)=(x-3)^{\frac{1}{3}}+4, [0,2]. h ( x ) = ( x − 3 ) 3 1 + 4 , [ 0 , 2 ] .
We find the critical point of h. To do so, take the derivative:
h ′ ( x ) = 1 3 ( x − 3 ) − 2 3 . h'(x)=\frac{1}{3}(x-3)^{-\frac{2}{3}}. h ′ ( x ) = 3 1 ( x − 3 ) − 3 2 .
Then h ′ ( x ) = 0 h'(x)=0 h ′ ( x ) = 0 when1 3 ( x − 3 ) − 2 3 = 0 , x = 3. \frac{1}{3}(x-3)^{-\frac{2}{3}}=0,\newline
x=3. 3 1 ( x − 3 ) − 3 2 = 0 , x = 3.
Evaluate h at the critical points and on the endpoints of the interval:
h ( 3 ) = 4 , h ( 0 ) = − 3 3 + 4 , h ( 2 ) = − 1 3 + 4 = 3. h(3)=4,\newline
h(0)=-\sqrt[3]{3}+4,\newline
h(2)=-\sqrt[3]{1}+4=3.\newline h ( 3 ) = 4 , h ( 0 ) = − 3 3 + 4 , h ( 2 ) = − 3 1 + 4 = 3.
Therefore, h achieves its absolute minimum of − 3 3 + 4 -\sqrt[3]{3}+4 − 3 3 + 4 at x=0 and its absolute maximum of 4 at x=3.
5.
f ( t ) = 3 cos 2 t , [ 1 6 π , 3 4 π ] . f(t)=3\cos{2t}, [\frac{1}{6}π,\frac{3}{4}π]. f ( t ) = 3 cos 2 t , [ 6 1 π , 4 3 π ] .
We find the critical point of f. To do so, take the derivative:
f ′ ( x ) = − 6 sin 2 t . f'(x)=-6\sin{2t}. f ′ ( x ) = − 6 sin 2 t .
Then f ′ ( x ) = 0 f'(x)=0 f ′ ( x ) = 0 when− 6 sin 2 t = 0 , sin 2 t = 0 , t = π k 2 , k ∈ Z . -6\sin{2t}=0,\newline
\sin{2t}=0,\newline
t=\frac{πk}{2}, k\in Z. − 6 sin 2 t = 0 , sin 2 t = 0 , t = 2 πk , k ∈ Z .
t = π 2 ∈ [ 1 6 π , 3 4 π ] . t=\frac{π}{2}\in [\frac{1}{6}π,\frac{3}{4}π]. t = 2 π ∈ [ 6 1 π , 4 3 π ] .
Evaluate f at the critical points and on the endpoints of the interval:
f ( π 6 ) = 3 cos π 3 = 1.5 , f ( 3 π 4 ) = 3 cos 3 π 2 = 0 , f ( π 2 ) = 3 cos π = − 3. f(\frac{π}{6})=3\cos{\frac{π}{3}}=1.5,\newline
f(\frac{3π}{4})=3\cos{\frac{3π}{2}}=0,\newline
f(\frac{π}{2})=3\cos{π}=-3.\newline f ( 6 π ) = 3 cos 3 π = 1.5 , f ( 4 3 π ) = 3 cos 2 3 π = 0 , f ( 2 π ) = 3 cos π = − 3.
Therefore, f achieves its absolute minimum of -3 at t = π 2 , t=\frac{π}{2}, t = 2 π , and its absolute maximum of 1.5 at t = π 6 . t=\frac{π}{6}. t = 6 π .
Comments