Question #208334

Given the function f, discuss its relative maximum and minimum

points, the intervals where it is increasing and decreasing, the intervals of concavity, and the points of inflection. Construct a sketch of the graph of the function.


1. 𝑓(𝑥)= 2𝑥−4 / x²


2. 𝑓 𝑥 =10𝑥 / 1+3𝑥²


3. 𝑓 𝑥 = 𝑥³ − 3/2 𝑥²


4. 𝑓 𝑥 = 𝑥 − 𝑥³ / 3


1
Expert's answer
2021-06-21T06:08:36-0400

1. f(x)=2x4/x2f(x)=2x-4/x^2


Df:(,0)(0,)Df: (-\infin, 0)\cup(0, \infin)



f(x)=(2x4x2)=2+8x3f'(x)=(2x-\dfrac{4}{x^2})'=2+\dfrac{8}{x^3}

Critical number(s):


f(x)=0=>2+8x3=0=>x=43f'(x)=0=>2+\dfrac{8}{x^3}=0=>x=-\sqrt[3]{4}


f(43)=2(43)4/(43)2=343f(-\sqrt[3]{4})=2(-\sqrt[3]{4})-4/(-\sqrt[3]{4})^2=-3\sqrt[3]{4}

If x<43,f(x)>0,f(x)x<-\sqrt[3]{4}, f'(x)>0, f(x) increases.


If 43<x<0,f(x)<0,f(x)-\sqrt[3]{4}<x<0, f'(x)<0, f(x) decreases.


If x>0,f(x)>0,f(x)x>0, f'(x)>0, f(x) increases.


The function f(x)f(x) increases on (,43)(0,).(-\infin, -\sqrt[3]{4})\cup(0, \infin).

The function f(x)f(x) decreases on (43,0).(-\sqrt[3]{4}, 0).


The function f(x)f(x) has a local maximum at x=43.x=-\sqrt[3]{4}.

The function f(x)f(x) has no local minimum.


f(x)=(2+8x3)=32x4<0xDff''(x)=(2+\dfrac{8}{x^3})'=-\dfrac{32}{x^4}<0 x\in Df

The function f(x)f(x) is concave down on (,0)(0,).(-\infin, 0)\cup(0, \infin).

The function f(x)f(x) is not concave up anywhere.

The function f(x)f(x) has no point of inflection.




2. f(x)=10x1+3x2f(x)=\dfrac{10x}{1+3x^2}


Df:(,)Df: (-\infin, \infin)



f(x)=(10x1+3x2)=10(3x21)(1+3x2)2f'(x)=(\dfrac{10x}{1+3x^2})'=-\dfrac{10(3x^2-1)}{(1+3x^2)^2}

Critical number(s):


f(x)=0=>10(3x21)(1+3x2)2=0=>x=±33f'(x)=0=>-\dfrac{10(3x^2-1)}{(1+3x^2)^2}=0=>x=\pm\dfrac{\sqrt{3}}{3}


f(33)=10(33)1+3(33)2=533f(-\dfrac{\sqrt{3}}{3})=\dfrac{10(-\dfrac{\sqrt{3}}{3})}{1+3(-\dfrac{\sqrt{3}}{3})^2}=-\dfrac{5\sqrt{3}}{3}

f(33)=10(33)1+3(33)2=533f(\dfrac{\sqrt{3}}{3})=\dfrac{10(\dfrac{\sqrt{3}}{3})}{1+3(\dfrac{\sqrt{3}}{3})^2}=\dfrac{5\sqrt{3}}{3}


If x<33,f(x)<0,f(x)x<-\dfrac{\sqrt{3}}{3}, f'(x)<0, f(x) decreases.


If 33<x<33,f(x)>0,f(x)-\dfrac{\sqrt{3}}{3}<x<\dfrac{\sqrt{3}}{3}, f'(x)>0, f(x) increases.


If x>33,f(x)<0,f(x)x>\dfrac{\sqrt{3}}{3}, f'(x)<0, f(x) decreases.


The function f(x)f(x) increases on (33,33).(-\dfrac{\sqrt{3}}{3}, \dfrac{\sqrt{3}}{3}).

The function f(x)f(x) decreases on (,33)(33,).(-\infin, -\dfrac{\sqrt{3}}{3})\cup(\dfrac{\sqrt{3}}{3}, \infin).


The function f(x)f(x) has a local maximum at x=33.x=\dfrac{\sqrt{3}}{3}.

The function f(x)f(x) has a local minimum at x=33.x=-\dfrac{\sqrt{3}}{3}.



f(x)=(10(3x21)(1+3x2)2)=180x(x21)(1+3x2)3f''(x)=(-\dfrac{10(3x^2-1)}{(1+3x^2)^2})'=\dfrac{180x(x^2-1)}{(1+3x^2)^3}




f(x)=0=>180x(x21)(1+3x2)3=0f''(x)=0=>\dfrac{180x(x^2-1)}{(1+3x^2)^3}=0

x1=1,x2=0,x3=1x_1=-1, x_2=0, x_3=1

f(1)=10(1)1+3(1)2=52f(-1)=\dfrac{10(-1)}{1+3(-1)^2}=-\dfrac{5}{2}

f(0)=10(0)1+3(0)2=0f(0)=\dfrac{10(0)}{1+3(0)^2}=0

f(1)=10(1)1+3(1)2=52f(1)=\dfrac{10(1)}{1+3(1)^2}=\dfrac{5}{2}

The function f(x)f(x) is concave up on (1,0)(1,).(-1, 0)\cup(1, \infin).

The function f(x)f(x) is concave down on (,1)(0,1).(-\infin, -1)\cup(0, 1).


The points of inflection are (1,2.5),(0,0),(1,2.5).(-1, -2.5), (0,0), (1,2.5).





3. f(x)=x332x2f(x)=x^3-\dfrac{3}{2x^2}


Df:(,0)(0,)Df: (-\infin, 0)\cup(0, \infin)


f(x)=(x332x2)=3x2+3x3f'(x)=(x^3-\dfrac{3}{2x^2})'=3x^2+\dfrac{3}{x^3}

Critical number(s):


f(x)=0=>3x2+3x3=0=>x=1f'(x)=0=>3x^2+\dfrac{3}{x^3}=0=>x=-1


f(1)=(1)332(1)2=52f(-1)=(-1)^3-\dfrac{3}{2(-1)^2}=-\dfrac{5}{2}

If x<1,f(x)>0,f(x)x<-1, f'(x)>0, f(x) increases.


If 1<x<0,f(x)<0,f(x)-1<x<0, f'(x)<0, f(x) decreases.


If x>0,f(x)>0,f(x)x>0, f'(x)>0, f(x) increases.


The function f(x)f(x) increases on (,1)(0,).(-\infin, -1)\cup(0, \infin).

The function f(x)f(x) decreases on (1,0).(-1, 0).


The function f(x)f(x) has a local maximum at x=1.x=-1.

The function f(x)f(x) has no local minimum.


f(x)=(3x2+3x3)=6x9x4f''(x)=(3x^2+\dfrac{3}{x^3})'=6x-\dfrac{9}{x^4}f(x)=0=>6x9x4=0f''(x)=0=>6x-\dfrac{9}{x^4}=0

x=1.55x=\sqrt[5]{1.5}

f(1.55)=(1.55)332(1.55)2=0f(\sqrt[5]{1.5})=(\sqrt[5]{1.5})^3-\dfrac{3}{2(\sqrt[5]{1.5})^2}=0

The function f(x)f(x) is concave up on (1.55,).(\sqrt[5]{1.5}, \infin).

The function f(x)f(x) is concave down on (,0)(0,1.55).(-\infin, 0)\cup(0, \sqrt[5]{1.5}).


The point of inflection is (1.55,0).(\sqrt[5]{1.5},0).



4. f(x)=xx33f(x)=x-\dfrac{x^3}{3}


Df:(,)Df: (-\infin, \infin)



f(x)=(xx33)=1x2f'(x)=(x-\dfrac{x^3}{3})'=1-x^2

Critical number(s):


f(x)=0=>1x2=0=>x=±1f'(x)=0=>1-x^2=0=>x=\pm1


f(1)=1(1)33=23f(-1)=-1-\dfrac{(-1)^3}{3}=-\dfrac{2}{3}

f(1)=1(1)33=23f(1)=1-\dfrac{(1)^3}{3}=\dfrac{2}{3}


If x<1,f(x)<0,f(x)x<-1, f'(x)<0, f(x) decreases.


If 1<x<1,f(x)>0,f(x)-1<x<1, f'(x)>0, f(x) increases.


If x>1,f(x)<0,f(x)x>1, f'(x)<0, f(x) decreases.


The function f(x)f(x) increases on (33,33).(-\dfrac{\sqrt{3}}{3}, \dfrac{\sqrt{3}}{3}).

The function f(x)f(x) decreases on (,33)(33,).(-\infin, -\dfrac{\sqrt{3}}{3})\cup(\dfrac{\sqrt{3}}{3}, \infin).


The function f(x)f(x) has a local maximum at x=1.x=1.

The function f(x)f(x) has a local minimum at x=1.x=-1.



f(x)=(1x2)=2xf''(x)=(1-x^2)'=-2x




f(x)=0=>2x=0f''(x)=0=>-2x=0

x=0x=0

f(0)=0(0)33=0f(0)=0-\dfrac{(0)^3}{3}=0

The function f(x)f(x) is concave up on (,0).(-\infin, 0).

The function f(x)f(x) is concave down on (0,).(0,-\infin).


The point of inflection is (0,0).(0,0).




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS