Given the function f, discuss its relative maximum and minimum
points, the intervals where it is increasing and decreasing, the intervals of concavity, and the points of inflection. Construct a sketch of the graph of the function.
1. π(π₯)= 2π₯β4 / xΒ²
2. π π₯ =10π₯ / 1+3π₯Β²
3. π π₯ = π₯Β³ β 3/2 π₯Β²
4. π π₯ = π₯ β π₯Β³ / 3
1. "f(x)=2x-4\/x^2"
"Df: (-\\infin, 0)\\cup(0, \\infin)"
Critical number(s):
If "x<-\\sqrt[3]{4}, f'(x)>0, f(x)" increases.
If "-\\sqrt[3]{4}<x<0, f'(x)<0, f(x)" decreases.
If "x>0, f'(x)>0, f(x)" increases.
The function "f(x)" increases on "(-\\infin, -\\sqrt[3]{4})\\cup(0, \\infin)."
The function "f(x)" decreases on "(-\\sqrt[3]{4}, 0)."
The function "f(x)" has a local maximum at "x=-\\sqrt[3]{4}."
The function "f(x)" has no local minimum.
The function "f(x)" is concave down on "(-\\infin, 0)\\cup(0, \\infin)."
The function "f(x)" is not concave up anywhere.
The function "f(x)" has no point of inflection.
2. "f(x)=\\dfrac{10x}{1+3x^2}"
"Df: (-\\infin, \\infin)"
Critical number(s):
"f(\\dfrac{\\sqrt{3}}{3})=\\dfrac{10(\\dfrac{\\sqrt{3}}{3})}{1+3(\\dfrac{\\sqrt{3}}{3})^2}=\\dfrac{5\\sqrt{3}}{3}"
If "x<-\\dfrac{\\sqrt{3}}{3}, f'(x)<0, f(x)" decreases.
If "-\\dfrac{\\sqrt{3}}{3}<x<\\dfrac{\\sqrt{3}}{3}, f'(x)>0, f(x)" increases.
If "x>\\dfrac{\\sqrt{3}}{3}, f'(x)<0, f(x)" decreases.
The function "f(x)" increases on "(-\\dfrac{\\sqrt{3}}{3}, \\dfrac{\\sqrt{3}}{3})."
The function "f(x)" decreases on "(-\\infin, -\\dfrac{\\sqrt{3}}{3})\\cup(\\dfrac{\\sqrt{3}}{3}, \\infin)."
The function "f(x)" has a local maximum at "x=\\dfrac{\\sqrt{3}}{3}."
The function "f(x)" has a local minimum at "x=-\\dfrac{\\sqrt{3}}{3}."
"x_1=-1, x_2=0, x_3=1"
"f(-1)=\\dfrac{10(-1)}{1+3(-1)^2}=-\\dfrac{5}{2}"
"f(0)=\\dfrac{10(0)}{1+3(0)^2}=0"
"f(1)=\\dfrac{10(1)}{1+3(1)^2}=\\dfrac{5}{2}"
The function "f(x)" is concave up on "(-1, 0)\\cup(1, \\infin)."
The function "f(x)" is concave down on "(-\\infin, -1)\\cup(0, 1)."
The points of inflection are "(-1, -2.5), (0,0), (1,2.5)."
3. "f(x)=x^3-\\dfrac{3}{2x^2}"
"Df: (-\\infin, 0)\\cup(0, \\infin)"
Critical number(s):
If "x<-1, f'(x)>0, f(x)" increases.
If "-1<x<0, f'(x)<0, f(x)" decreases.
If "x>0, f'(x)>0, f(x)" increases.
The function "f(x)" increases on "(-\\infin, -1)\\cup(0, \\infin)."
The function "f(x)" decreases on "(-1, 0)."
The function "f(x)" has a local maximum at "x=-1."
The function "f(x)" has no local minimum.
"x=\\sqrt[5]{1.5}"
"f(\\sqrt[5]{1.5})=(\\sqrt[5]{1.5})^3-\\dfrac{3}{2(\\sqrt[5]{1.5})^2}=0"
The function "f(x)" is concave up on "(\\sqrt[5]{1.5}, \\infin)."
The function "f(x)" is concave down on "(-\\infin, 0)\\cup(0, \\sqrt[5]{1.5})."
The point of inflection is "(\\sqrt[5]{1.5},0)."
4. "f(x)=x-\\dfrac{x^3}{3}"
"Df: (-\\infin, \\infin)"
Critical number(s):
"f(1)=1-\\dfrac{(1)^3}{3}=\\dfrac{2}{3}"
If "x<-1, f'(x)<0, f(x)" decreases.
If "-1<x<1, f'(x)>0, f(x)" increases.
If "x>1, f'(x)<0, f(x)" decreases.
The function "f(x)" increases on "(-\\dfrac{\\sqrt{3}}{3}, \\dfrac{\\sqrt{3}}{3})."
The function "f(x)" decreases on "(-\\infin, -\\dfrac{\\sqrt{3}}{3})\\cup(\\dfrac{\\sqrt{3}}{3}, \\infin)."
The function "f(x)" has a local maximum at "x=1."
The function "f(x)" has a local minimum at "x=-1."
"x=0"
"f(0)=0-\\dfrac{(0)^3}{3}=0"
The function "f(x)" is concave up on "(-\\infin, 0)."
The function "f(x)" is concave down on "(0,-\\infin)."
The point of inflection is "(0,0)."
Comments
Leave a comment