Given the function f, discuss its relative maximum and minimum
points, the intervals where it is increasing and decreasing, the intervals of concavity, and the points of inflection. Construct a sketch of the graph of the function.
1. 𝑓(𝑥)= 2𝑥−4 / x²
2. 𝑓 𝑥 =10𝑥 / 1+3𝑥²
3. 𝑓 𝑥 = 𝑥³ − 3/2 𝑥²
4. 𝑓 𝑥 = 𝑥 − 𝑥³ / 3
1
Expert's answer
2021-06-21T06:08:36-0400
1. f(x)=2x−4/x2
Df:(−∞,0)∪(0,∞)
f′(x)=(2x−x24)′=2+x38
Critical number(s):
f′(x)=0=>2+x38=0=>x=−34
f(−34)=2(−34)−4/(−34)2=−334
If x<−34,f′(x)>0,f(x) increases.
If −34<x<0,f′(x)<0,f(x) decreases.
If x>0,f′(x)>0,f(x) increases.
The function f(x) increases on (−∞,−34)∪(0,∞).
The function f(x) decreases on (−34,0).
The function f(x) has a local maximum at x=−34.
The function f(x) has no local minimum.
f′′(x)=(2+x38)′=−x432<0x∈Df
The function f(x) is concave down on (−∞,0)∪(0,∞).
The function f(x) is not concave up anywhere.
The function f(x) has no point of inflection.
2. f(x)=1+3x210x
Df:(−∞,∞)
f′(x)=(1+3x210x)′=−(1+3x2)210(3x2−1)
Critical number(s):
f′(x)=0=>−(1+3x2)210(3x2−1)=0=>x=±33
f(−33)=1+3(−33)210(−33)=−353
f(33)=1+3(33)210(33)=353
If x<−33,f′(x)<0,f(x) decreases.
If −33<x<33,f′(x)>0,f(x) increases.
If x>33,f′(x)<0,f(x) decreases.
The function f(x) increases on (−33,33).
The function f(x) decreases on (−∞,−33)∪(33,∞).
The function f(x) has a local maximum at x=33.
The function f(x) has a local minimum at x=−33.
f′′(x)=(−(1+3x2)210(3x2−1))′=(1+3x2)3180x(x2−1)
f′′(x)=0=>(1+3x2)3180x(x2−1)=0
x1=−1,x2=0,x3=1
f(−1)=1+3(−1)210(−1)=−25
f(0)=1+3(0)210(0)=0
f(1)=1+3(1)210(1)=25
The function f(x) is concave up on (−1,0)∪(1,∞).
The function f(x) is concave down on (−∞,−1)∪(0,1).
The points of inflection are (−1,−2.5),(0,0),(1,2.5).
3. f(x)=x3−2x23
Df:(−∞,0)∪(0,∞)
f′(x)=(x3−2x23)′=3x2+x33
Critical number(s):
f′(x)=0=>3x2+x33=0=>x=−1
f(−1)=(−1)3−2(−1)23=−25
If x<−1,f′(x)>0,f(x) increases.
If −1<x<0,f′(x)<0,f(x) decreases.
If x>0,f′(x)>0,f(x) increases.
The function f(x) increases on (−∞,−1)∪(0,∞).
The function f(x) decreases on (−1,0).
The function f(x) has a local maximum at x=−1.
The function f(x) has no local minimum.
f′′(x)=(3x2+x33)′=6x−x49f′′(x)=0=>6x−x49=0
x=51.5
f(51.5)=(51.5)3−2(51.5)23=0
The function f(x) is concave up on (51.5,∞).
The function f(x) is concave down on (−∞,0)∪(0,51.5).
The point of inflection is (51.5,0).
4. f(x)=x−3x3
Df:(−∞,∞)
f′(x)=(x−3x3)′=1−x2
Critical number(s):
f′(x)=0=>1−x2=0=>x=±1
f(−1)=−1−3(−1)3=−32
f(1)=1−3(1)3=32
If x<−1,f′(x)<0,f(x) decreases.
If −1<x<1,f′(x)>0,f(x) increases.
If x>1,f′(x)<0,f(x) decreases.
The function f(x) increases on (−33,33).
The function f(x) decreases on (−∞,−33)∪(33,∞).
Comments