Question #206311

Find the volume of the solid bounded by the planes x = y, x + y + z = 4,

y = 0, z = 0.


1
Expert's answer
2021-06-15T10:25:10-0400

Let us find the volume of the solid bounded by the planes x=y,x+y+z=4,y=0,z=0.x = y, x + y + z = 4, y = 0, z = 0. The plane x+y+z=4x+y+z=4 intersects the plane z=0z=0 by the line x+y=4.x+y=4. The intesection in the plane z=0z=0 of two lines x=yx=y and x+y=4x+y=4 is the point A(2,2).A(2,2). Therefore, the volume is equal to


V=02dyy4y(4xy)dx=02(4xx22yx)y4ydy=02(4(4y)(4y)22y(4y)4y+y22+y2)dy=02(164y8+4yy224y+y24y+y22+y2)dy=02(2y28y+8)dy=(2y334y2+8y)02=16316+16=163.V=\int_0^2dy\int_y^{4-y}(4-x-y)dx=\int_0^2(4x-\frac{x^2}{2}-yx)|_y^{4-y}dy= \int_0^2(4(4-y)-\frac{(4-y)^2}{2}-y(4-y)-4y+\frac{y^2}{2}+y^2)dy= \int_0^2(16-4y-8+4y-\frac{y^2}{2}-4y+y^2-4y+\frac{y^2}{2}+y^2)dy= \int_0^2(2y^2-8y+8)dy=(\frac{2y^3}{3}-4y^2+8y)|_0^2=\frac{16}{3}-16+16=\frac{16}{3}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS