Question #206263

Find the value of a and b if

lim x(1+acosx)-bsinx/ (x^3)=1

x→∞


1
Expert's answer
2021-06-16T11:25:08-0400

Solution:-

there is error in question as i got when I solved the full question that is it comes out to be infinite , the limit should tend to zero instead of infinite to get the result , so i am solving the problem by taking limit as tends to zero.


limx0x(1+acosx)bsinx(x3)=1lim_{x \rightarrow 0} {x(1+acosx)-bsinx\over (x^3)}=1

as we see it is 00{0 \over 0} type of limit

using L' Hospital rule

we get

=limx01+acosxaxsinxbcosx(3x2)=1lim_{x \rightarrow 0} {1+acosx-axsinx-bcosx\over (3x^2)}=1

=limx01+(ab)cosxaxsinx(3x2)=1lim_{x \rightarrow 0} {1+(a-b)cosx-axsinx\over (3x^2)}=1

we see that limit exist when a-b=-1 , the 000\over 0 exist with this condition only

To use L'Hospital , we see a-b has to be -1


\therefore ab=1a-b =-1 ............................................................(1)

Applying L'Hospital again ,

= limx0(ab)sinxasinxaxcosx(6x)=1lim_{x \rightarrow 0} {-(a-b)sinx-asinx-axcosx\over (6x)}=1

this is is in form of 00{0 \over 0} , using L'Hospital yet again ,

= limx0(b2a)cosx+axsinxacosx(6)=1lim_{x \rightarrow 0} {(b-2a)cosx+axsinx-acosx\over (6)}=1

=limx0(b3a)cosx+axsinx(6)=1lim_{x \rightarrow 0} {(b-3a)cosx+axsinx\over (6)}=1 { sin(0)=0 , cos(0)=1}

    \implies

when we put x=0 , we get cosx =1, sinx=0, and putting the limit equals to 1 we get the following result

b-3a=6 ...........................................................................(2)

solving (1) and (2) we get

a=52-5\over 2

b=32-3\over 2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS