Question #206166

 Lim (3π‘₯ βˆ’ π‘₯ 2 )


1
Expert's answer
2021-06-14T18:57:39-0400
lim⁑xβ†’βˆ’βˆž(3xβˆ’x2)=lim⁑xβ†’βˆ’βˆž(x)lim⁑xβ†’βˆ’βˆž(3βˆ’x)=βˆ’βˆž\lim\limits_{x\to-\infin}(3x-x^2)=\lim\limits_{x\to-\infin}(x)\lim\limits_{x\to-\infin}(3-x)=-\infin

lim⁑xβ†’βˆž(3xβˆ’x2)=lim⁑xβ†’βˆž(x)lim⁑xβ†’βˆž(3βˆ’x)=βˆ’βˆž\lim\limits_{x\to\infin}(3x-x^2)=\lim\limits_{x\to\infin}(x)\lim\limits_{x\to\infin}(3-x)=-\infin

lim⁑xβ†’0(3xβˆ’x2)=3(0)βˆ’(0)2=0\lim\limits_{x\to0}(3x-x^2)=3(0)-(0)^2=0

lim⁑xβ†’a(3xβˆ’x2)=3aβˆ’a2, a≠±∞\lim\limits_{x\to a}(3x-x^2)=3a-a^2,\ a\not=\pm\infin



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS