Answer to Question #206147 in Calculus for KABIR

Question #206147
  • Find the volume of the solid formed by revolving the curve, r=a(1+cosθ), about the initial line.
1
Expert's answer
2021-06-14T15:07:49-0400
V=0π23πr2rsinθdθV=\displaystyle\int_{0}^{\pi}\dfrac{2}{3}\pi r^2r\sin\theta d\theta

=0π23π(a(1+cosθ))3sinθdθ=\displaystyle\int_{0}^{\pi}\dfrac{2}{3}\pi (a(1+\cos \theta))^3\sin\theta d\theta

=23πa3[14(1+cosθ)4]π0=\dfrac{2}{3}\pi a^3\big[-\dfrac{1}{4}(1+\cos \theta)^4\big]\begin{matrix} \pi \\ 0 \end{matrix}

=16πa3(024)=-\dfrac{1}{6}\pi a^3(0-2^4)

=83πa3(units3)=\dfrac{8}{3}\pi a^3 (units^3)

V=83πa3 cubic unitsV=\dfrac{8}{3}\pi a^3 \text{ cubic units}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

KABIR
14.06.21, 23:04

I really appreciate your help

Leave a comment