Ans:-
x = a ( θ − S i n θ ) y = a ( 1 − C o s θ ) Y = 0 ⇒ 1 − C o s θ = 0 ⇒ C o s θ = 1 ⇒ θ = 0 , 2 π x=a(\theta-Sin\theta)\ \ \ \ \ \ \ \ \ y=a(1-Cos\theta)\\
Y=0 \Rightarrow 1-Cos\theta=0 \Rightarrow Cos\theta=1 \Rightarrow \theta=0,2\pi\\ x = a ( θ − S in θ ) y = a ( 1 − C os θ ) Y = 0 ⇒ 1 − C os θ = 0 ⇒ C os θ = 1 ⇒ θ = 0 , 2 π
x = a ( θ − S i n θ ) ⇒ d x d θ = a ( 1 − C o s θ ) x=a(\theta-Sin\theta) \Rightarrow \ \dfrac{dx}{d\theta}=a(1-Cos\theta) x = a ( θ − S in θ ) ⇒ d θ d x = a ( 1 − C os θ )
y = a ( 1 − C o s θ ) ⇒ d y d θ = a S i n θ y=a(1-Cos\theta) \Rightarrow \dfrac{dy}{d\theta}=aSin\theta\\ y = a ( 1 − C os θ ) ⇒ d θ d y = a S in θ
( d y d θ ) 2 + ( d x d θ ) 2 = a 2 ( 1 − C o s θ ) 2 + a 2 S i n 2 θ \sqrt{(\dfrac{dy}{d\theta})^2+(\dfrac{dx}{d\theta})^2}= \sqrt{a^2(1-Cos\theta)^2+a^2Sin^2\theta} ( d θ d y ) 2 + ( d θ d x ) 2 = a 2 ( 1 − C os θ ) 2 + a 2 S i n 2 θ
a 2 + a 2 C o s 2 θ − 2 a 2 C o s θ + a 2 S i n 2 θ \sqrt{a^2+a^2Cos^2\theta-2a^2Cos\theta+a^2Sin^2\theta}\\ a 2 + a 2 C o s 2 θ − 2 a 2 C os θ + a 2 S i n 2 θ
2 a 2 − 2 a C o s θ ⇒ 2 a 1 − C o s θ = 2 a S i n θ 2 \sqrt{2a^2-2aCos\theta} \ \ \Rightarrow \sqrt2a\sqrt{1-Cos\theta}=2aSin\dfrac{\theta}{2} 2 a 2 − 2 a C os θ ⇒ 2 a 1 − C os θ = 2 a S in 2 θ
Surface Area=∫ 0 2 π 2 π a ( 1 − C o s θ ) × 2 a S i n θ 2 d θ \int ^{2\pi} _0 2\pi a(1-Cos\theta) \times 2aSin\dfrac{\theta}{2} \ d\theta ∫ 0 2 π 2 πa ( 1 − C os θ ) × 2 a S in 2 θ d θ
∫ 0 2 π 2 π a × 2 S i n 2 θ 2 × 2 a S i n θ 2 d θ \int ^{2\pi} _0 2\pi a \times 2Sin^2\dfrac{\theta}{2}\times 2aSin\dfrac{\theta}{2} \ d\theta ∫ 0 2 π 2 πa × 2 S i n 2 2 θ × 2 a S in 2 θ d θ
16 π a 2 ∫ 0 2 π S i n 3 θ 2 d t 16\pi a^2 \int ^{2\pi} _0 Sin^3\dfrac{\theta}{2}dt 16 π a 2 ∫ 0 2 π S i n 3 2 θ d t
16 π a 2 ∫ 0 π 2 × S i n 3 x d t [ T a k e θ 2 = x ] 16\pi a^2 \int ^{\pi} _0 2 \times Sin^3x\ dt\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [Take \dfrac{\theta}{2}=x] 16 π a 2 ∫ 0 π 2 × S i n 3 x d t [ T ak e 2 θ = x ]
32 π a 2 I 3 = 32 π a 2 × 2 3 32 \pi a^2I_3=32\pi a^2 \times \dfrac{2}{3}\\ 32 π a 2 I 3 = 32 π a 2 × 3 2
64 π a 2 3 s q . u n i t s \dfrac{64\pi a^2}{3} sq.units 3 64 π a 2 s q . u ni t s
Comments
Dear KABIR, we prefer typing conditions of the question in the form of the question. If additional pictures is added to the question, then you can post a link to this picture.
At first I am very thankful to your expert. Can you tell me plz how I add the picture of my question paper in your 'ask your question ' Option?
I'm so grateful