Question #206145
  1. Find the area of the surface of the solid formed by the revolution the curve, x=a(θ - sinθ) and Y=a(1- cosθ) about x-axis (y=0).
1
Expert's answer
2021-06-14T18:36:50-0400

Ans:-

x=a(θSinθ)         y=a(1Cosθ)Y=01Cosθ=0Cosθ=1θ=0,2πx=a(\theta-Sin\theta)\ \ \ \ \ \ \ \ \ y=a(1-Cos\theta)\\ Y=0 \Rightarrow 1-Cos\theta=0 \Rightarrow Cos\theta=1 \Rightarrow \theta=0,2\pi\\


x=a(θSinθ) dxdθ=a(1Cosθ)x=a(\theta-Sin\theta) \Rightarrow \ \dfrac{dx}{d\theta}=a(1-Cos\theta)


y=a(1Cosθ)dydθ=aSinθy=a(1-Cos\theta) \Rightarrow \dfrac{dy}{d\theta}=aSin\theta\\


(dydθ)2+(dxdθ)2=a2(1Cosθ)2+a2Sin2θ\sqrt{(\dfrac{dy}{d\theta})^2+(\dfrac{dx}{d\theta})^2}= \sqrt{a^2(1-Cos\theta)^2+a^2Sin^2\theta}


a2+a2Cos2θ2a2Cosθ+a2Sin2θ\sqrt{a^2+a^2Cos^2\theta-2a^2Cos\theta+a^2Sin^2\theta}\\


2a22aCosθ  2a1Cosθ=2aSinθ2\sqrt{2a^2-2aCos\theta} \ \ \Rightarrow \sqrt2a\sqrt{1-Cos\theta}=2aSin\dfrac{\theta}{2}


Surface Area=02π2πa(1Cosθ)×2aSinθ2 dθ\int ^{2\pi} _0 2\pi a(1-Cos\theta) \times 2aSin\dfrac{\theta}{2} \ d\theta


02π2πa×2Sin2θ2×2aSinθ2 dθ\int ^{2\pi} _0 2\pi a \times 2Sin^2\dfrac{\theta}{2}\times 2aSin\dfrac{\theta}{2} \ d\theta


16πa202πSin3θ2dt16\pi a^2 \int ^{2\pi} _0 Sin^3\dfrac{\theta}{2}dt


16πa20π2×Sin3x dt               [Takeθ2=x]16\pi a^2 \int ^{\pi} _0 2 \times Sin^3x\ dt\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [Take \dfrac{\theta}{2}=x]


32πa2I3=32πa2×2332 \pi a^2I_3=32\pi a^2 \times \dfrac{2}{3}\\


64πa23sq.units\dfrac{64\pi a^2}{3} sq.units



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.07.21, 22:49

Dear KABIR, we prefer typing conditions of the question in the form of the question. If additional pictures is added to the question, then you can post a link to this picture.


KABIR
15.06.21, 01:58

At first I am very thankful to your expert. Can you tell me plz how I add the picture of my question paper in your 'ask your question ' Option?

KABIR
15.06.21, 01:51

I'm so grateful

LATEST TUTORIALS
APPROVED BY CLIENTS