Question #206141
  • Find the volume of the solid generated by revolving the area enclosed between the evolute, 27ay^2 = 4(x-2a) ^3 and the parabola, y^2 = 4ax about x-axis.
1
Expert's answer
2021-07-28T09:23:49-0400

The given evolute is:


27ay2=4(x2a)3(i)27ay^2=4(x-2a)^3 \qquad \cdots(i)

And the given parabola is:


y2=4ax(ii)y^2=4ax \qquad \cdots(ii)

To obtain the enclosed area, substitute (ii) in (i):

27a(4ax)=4(x2a)34(27a2x)=4(x2a)327a2x=x36ax2+12a2x8a3x36ax215a2x8a3=0(x8a)(x+a)2=027a(4ax)=4(x-2a)^3\\ 4(27a^2x)=4(x-2a)^3\\ 27a^2x=x^3-6ax^2+12a^2x-8a^3\\ x^3-6ax^2-15a^2x-8a^3=0\\ (x-8a)(x+a)^2=0\\


Thus


x=8a,x=ax=8a, x=-a

Therefore, about x-axis, the solid revolved from -a to 8a.


The required volume is thus:

V=πa8a(4ax4(x2a)327a)dx=πa8a(108a2x4(x2a)327a)dx=4π27aa8a(27a2x(x2a)3)dx=4π27aa8a(x3+6ax2+15a2x+8a3)dx=4π27a[x44+6ax33+15a2x22+8a3x]a8a=4π27a[(4096a44+1024a4+960a4+64a3)(a442a4+15a428a4)]=4π27a(1024a4(11a44))=4π27a(1024a4+11a44))=4π27a(4107a44)=1369a39πcubicunitsV=152.1a3πcubicunitsV=\pi\int_{-a}^{8a}\Big(4ax-\frac{4(x-2a)^3}{27a}\Big)dx\\ \quad = \pi\int_{-a}^{8a}\Big(\frac{108a^2x-4(x-2a)^3}{27a}\Big)dx\\ \quad = \frac{4\pi}{27a}\int_{-a}^{8a}\Big(27a^2x-(x-2a)^3\Big)dx\\ \quad = \frac{4\pi}{27a}\int_{-a}^{8a}\Big(-x^3+6ax^2+15a^2x+8a^3\Big)dx\\ \quad = \frac{4\pi}{27a}\Big[-\frac{x^4}{4}+\frac{6ax^3}{3}+\frac{15a^2x^2}{2}+8a^3x\Big]_{-a}^{8a}\\ \quad = \frac{4\pi}{27a}\Big[(-\frac{4096a^4}{4}+1024a^4+960a^4+64a^3)-(-\frac{a^4}{4}-2a^4+\frac{15a^4}{2}-8a^4)\Big]\\ \quad = \frac{4\pi}{27a}\Big(1024a^4-(-\frac{11a^4}{4})\Big)\\ \quad = \frac{4\pi}{27a}\Big(1024a^4+\frac{11a^4}{4})\Big)\\ \quad = \frac{4\pi}{27a}\Big(\frac{4107a^4}{4}\Big)\\ \quad = \frac{1369a^3}{9}\pi \quad cubic \,units\\ V= 152.1a^3\pi \quad cubic \,units\\


Hence the required volume


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS