The given evolute is:
27ay2=4(x−2a)3⋯(i) And the given parabola is:
y2=4ax⋯(ii) To obtain the enclosed area, substitute (ii) in (i):
27a(4ax)=4(x−2a)34(27a2x)=4(x−2a)327a2x=x3−6ax2+12a2x−8a3x3−6ax2−15a2x−8a3=0(x−8a)(x+a)2=0
Thus
x=8a,x=−a Therefore, about x-axis, the solid revolved from -a to 8a.
The required volume is thus:
V=π∫−a8a(4ax−27a4(x−2a)3)dx=π∫−a8a(27a108a2x−4(x−2a)3)dx=27a4π∫−a8a(27a2x−(x−2a)3)dx=27a4π∫−a8a(−x3+6ax2+15a2x+8a3)dx=27a4π[−4x4+36ax3+215a2x2+8a3x]−a8a=27a4π[(−44096a4+1024a4+960a4+64a3)−(−4a4−2a4+215a4−8a4)]=27a4π(1024a4−(−411a4))=27a4π(1024a4+411a4))=27a4π(44107a4)=91369a3πcubicunitsV=152.1a3πcubicunits
Hence the required volume
Comments