Question #206144
  • Show that the area bounded by the curve, (x/2)^2 /3 + (y/4)^2/3 = 1 is 3π.
1
Expert's answer
2021-06-20T07:20:31-0400

(x2)23+(y4)23=1x212+y248=1y=±48(1x212)y=±212x2\frac{(\frac{x}{2})^2}{3}+\frac{(\frac{y}{4})^2}{3}=1\\ \frac{x^2}{12}+\frac{y^2}{48}=1\\ y=\pm\sqrt{48(1-\frac{x^2}{12})}\\ y=\pm2\sqrt{12-x^2}\\

To find x limit,

put y=0 in the given equation,

x212+0248=1x=±12=±23\frac{x^2}{12}+\frac{0^2}{48}=1\\ x=\pm\sqrt{12}=\pm2\sqrt{3}

area of the given curve

=4×abydx=4×023212x2dx=8023(23)2x2dx (By using integration formula)=8[x212x2+122sin1(x23)+c]023=8[0+6.π2+c00c]=24π=4×\int_a^bydx\\ =4×\int_0^{2\sqrt{3}}2\sqrt{12-x^2}dx\\ =8\int_0^{2\sqrt{3}}\sqrt{(2\sqrt{3})^2-x^2}dx\space (\text{By using integration formula)}\\ =8[\frac{x}{2}\sqrt{12-x^2}+\frac{12}{2}sin^{-1}(\frac{x}{2\sqrt{3}})+c]_0^{2\sqrt{3}}\\ =8[0+6.\frac{\pi}{2}+c-0-0-c]\\ =24\pi Thus, the area of the given curve is 24π.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS