Determine the location and values of the absolute maximum and absolute
minimum for the given function:
π(π₯) = (βπ₯ + 2)β΄, π€βπππ 0 β€ π₯ β€ 3
f(x)=(-x+2)β΄ , 0 β€ π₯ β€ 3
d/dx= 4(-x+2)Β³
d/dx=0
4(-x+2)Β³=0
-x+2=0; x=2
f(0)=(0+2)β΄=(2)β΄=16
the absolute minimum point is therefore at x=2 where the value is 0.
the absolute maximum point is at x=0 where the value is 16
Comments