Question #206291

Determine the location and values of the absolute maximum and absolute 

minimum for the given function: 

𝑓(π‘₯) = (βˆ’π‘₯ + 2)

ΰ¬Έ

, π‘€β„Žπ‘’π‘Ÿπ‘’ 0 ≀ π‘₯ ≀ 3


1
Expert's answer
2021-06-15T09:31:22-0400
F(x)=(βˆ’x+2)3F(x)=(-x+2)^3

0≀x≀30\leq x\leq 3

Find the first derivative


Fβ€²(x)=((βˆ’x+2)3)β€²=βˆ’3(βˆ’x+2)2F'(x)=((-x+2)^3)'=-3(-x+2)^2

Find the critical number(s)


Fβ€²(x)=0=>βˆ’3(βˆ’x+2)2=0F'(x)=0=>-3(-x+2)^2=0

x=2x=2

Critical number: 22

F(0)=(βˆ’2+0)3=βˆ’8F(0)=(-2+0)^3=-8




F(3)=(βˆ’2+3)3=1F(3)=(-2+3)^3=1

F(2)=(βˆ’2+2)3=0F(2)=(-2+2)^3=0

The function F(x)F(x) has the absolute maximum with value of 11 on [0,3][0, 3] at x=3:Point(3,1).x=3: Point(3,1).


The function F(x)F(x) has the absolute minimum with value of βˆ’8-8 on [0,3][0, 3] at x=0:Point(0,βˆ’8).x=0: Point(0,-8).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS