Let x=7sinu,dx=cosudu
I=∫x49−x2dx=7∫sinucos2udu=∫1−cos2usinucos2udu
Let v=cosu,dv=−sinudu
I=−7∫1−v2v2dv=−7∫[−1+2(v+1)1−2(v−1)1]dv=
=7v−27ln∣v−1v+1∣+C=
=49−x2+27ln∣49−x2+749−x2−7∣+C
Thus, ∫ln1ln2x49−x2dx=(49−x2+27ln∣49−x2+749−x2−7∣)∣x=ln1x=ln2=∞
The integral is divergent.
Comments