Solve the integral of √(49-x²)÷x from ln1 to ln2, using trigonometric substitution.
Let "x=7\\sin{u},dx=\\cos udu"
"I=\\int \\frac{\\sqrt{49-x^2}}{x}dx=7\\int \\frac{cos^2u}{sinu}du=\\int \\frac{sinucos^2u}{1-cos^2u}du"
Let "v=cosu,dv=-sinudu"
"I=-7\\int \\frac{v^2}{1-v^2}dv=-7\\int [-1+\\frac{1}{2(v+1)}-\\frac{1}{2(v-1)}]dv="
"=7v-\\frac{7}{2}ln|\\frac{v+1}{v-1}|+C="
"=\\sqrt{49-x^2}+\\frac{7}{2}ln|\\frac{\\sqrt{49-x^2}-7}{\\sqrt{49-x^2}+7}|+C"
Thus, "\\int_{ln1}^{ln2}\\frac{\\sqrt{49-x^2}}{x}dx=(\\sqrt{49-x^2}+\\frac{7}{2}ln|\\frac{\\sqrt{49-x^2}-7}{\\sqrt{49-x^2}+7}|)|_{x=ln1}^{x=ln2}=\\infin"
The integral is divergent.
Comments
Leave a comment