Let x = 7 sin u , d x = cos u d u x=7\sin{u},dx=\cos udu x = 7 sin u , d x = cos u d u
I = ∫ 49 − x 2 x d x = 7 ∫ c o s 2 u s i n u d u = ∫ s i n u c o s 2 u 1 − c o s 2 u d u I=\int \frac{\sqrt{49-x^2}}{x}dx=7\int \frac{cos^2u}{sinu}du=\int \frac{sinucos^2u}{1-cos^2u}du I = ∫ x 49 − x 2 d x = 7 ∫ s in u co s 2 u d u = ∫ 1 − co s 2 u s in u co s 2 u d u
Let v = c o s u , d v = − s i n u d u v=cosu,dv=-sinudu v = cos u , d v = − s in u d u
I = − 7 ∫ v 2 1 − v 2 d v = − 7 ∫ [ − 1 + 1 2 ( v + 1 ) − 1 2 ( v − 1 ) ] d v = I=-7\int \frac{v^2}{1-v^2}dv=-7\int [-1+\frac{1}{2(v+1)}-\frac{1}{2(v-1)}]dv= I = − 7 ∫ 1 − v 2 v 2 d v = − 7 ∫ [ − 1 + 2 ( v + 1 ) 1 − 2 ( v − 1 ) 1 ] d v =
= 7 v − 7 2 l n ∣ v + 1 v − 1 ∣ + C = =7v-\frac{7}{2}ln|\frac{v+1}{v-1}|+C= = 7 v − 2 7 l n ∣ v − 1 v + 1 ∣ + C =
= 49 − x 2 + 7 2 l n ∣ 49 − x 2 − 7 49 − x 2 + 7 ∣ + C =\sqrt{49-x^2}+\frac{7}{2}ln|\frac{\sqrt{49-x^2}-7}{\sqrt{49-x^2}+7}|+C = 49 − x 2 + 2 7 l n ∣ 49 − x 2 + 7 49 − x 2 − 7 ∣ + C
Thus, ∫ l n 1 l n 2 49 − x 2 x d x = ( 49 − x 2 + 7 2 l n ∣ 49 − x 2 − 7 49 − x 2 + 7 ∣ ) ∣ x = l n 1 x = l n 2 = ∞ \int_{ln1}^{ln2}\frac{\sqrt{49-x^2}}{x}dx=(\sqrt{49-x^2}+\frac{7}{2}ln|\frac{\sqrt{49-x^2}-7}{\sqrt{49-x^2}+7}|)|_{x=ln1}^{x=ln2}=\infin ∫ l n 1 l n 2 x 49 − x 2 d x = ( 49 − x 2 + 2 7 l n ∣ 49 − x 2 + 7 49 − x 2 − 7 ∣ ) ∣ x = l n 1 x = l n 2 = ∞
The integral is divergent.
Comments