Question #205241

Solve the integral of √(49-x²)÷x from ln1 to ln2, using trigonometric substitution.


1
Expert's answer
2021-06-12T07:23:06-0400

Let x=7sinu,dx=cosudux=7\sin{u},dx=\cos udu

I=49x2xdx=7cos2usinudu=sinucos2u1cos2uduI=\int \frac{\sqrt{49-x^2}}{x}dx=7\int \frac{cos^2u}{sinu}du=\int \frac{sinucos^2u}{1-cos^2u}du

Let v=cosu,dv=sinuduv=cosu,dv=-sinudu

I=7v21v2dv=7[1+12(v+1)12(v1)]dv=I=-7\int \frac{v^2}{1-v^2}dv=-7\int [-1+\frac{1}{2(v+1)}-\frac{1}{2(v-1)}]dv=

=7v72lnv+1v1+C==7v-\frac{7}{2}ln|\frac{v+1}{v-1}|+C=

=49x2+72ln49x2749x2+7+C=\sqrt{49-x^2}+\frac{7}{2}ln|\frac{\sqrt{49-x^2}-7}{\sqrt{49-x^2}+7}|+C

Thus, ln1ln249x2xdx=(49x2+72ln49x2749x2+7)x=ln1x=ln2=\int_{ln1}^{ln2}\frac{\sqrt{49-x^2}}{x}dx=(\sqrt{49-x^2}+\frac{7}{2}ln|\frac{\sqrt{49-x^2}-7}{\sqrt{49-x^2}+7}|)|_{x=ln1}^{x=ln2}=\infin

The integral is divergent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS