Solve the integral of √(49-x²)÷x from ln1 to ln2
"\\int_{ln1}^{ln2} {\\frac{\\sqrt{49-x\u00b2}}{x}}dx"
Let x = 7sin"\\theta"
dx = 7cos"\\theta" d"\\theta"
So "\\int {\\frac{\\sqrt{49-x\u00b2}}{x}}dx" =
"\\int {\\frac{\\sqrt{49-49sin\u00b2\\theta}}{7sin\\theta}}7cos{\\theta}d\\theta"
= "\\int {\\frac{7cos\u00b2{\\theta}}{sin\\theta}}d\\theta"
= "7\\int {\\frac{1-sin\u00b2{\\theta}}{sin\\theta}}d\\theta"
= "7\\int [{cosec\\theta+ sin\\theta}]d\\theta"
Let ln(cosec"\\theta" + cot"\\theta") = t
So "\\frac{-cosec\\theta cot\\theta-cosec\u00b2\\theta)}{cosec\\theta\u03b8 + cot\\theta\u03b8)}d\\theta"= dt
=> cosec"\\theta" d"\\theta = -dt"
= "-7\\int dt -7\\int sin\\theta d\\theta"
= -7t + 7cos"\\theta" + C
= -7 ln|cosec"\\theta" + cot"\\theta" | + 7cos"\\theta"
= 7 ln| "\\frac{sin\\theta}{1+cos\\theta}" | + 7cos"\\theta" + C
= "ln[\\frac{2sin\\theta\/2cos\\theta\/2}{2cos\u00b2\\theta\/2}]+ 7cos\\theta + C"
= ln[tan "\\theta\/2]+ 7cos\\theta+C"
Now as x--> ln1 , "\\theta" --> 0 and as x--> ln2 , "\\theta" --> sin -1(ln2/7)
So
"\\int_{ln1}^{ln2} {\\frac{\\sqrt{49-x\u00b2}}{x}}dx" = "[ln(tan\\theta\/2)+7cos\\theta]]_{0}^{sin^{-1}(ln2\/7)}"
= "[ln(tan(\\frac{1}{2}sin^{-1}(ln(2)\/7)+"
"7cos((sin^{-1}(ln(2\/7)]-"
"[ln(tan(0)+" "7cos(0)]"
= "[ln(tan(\\frac{1}{2}sin^{-1}(ln(2)\/7)+"
"7cos((sin^{-1}(ln(2\/7)] -7 - ln(0)"
= A finite quantity + ∞ as ln(0) -->-∞
= ∞
Comments
Leave a comment