Question #205232

Solve the integral of √(49-x²)÷x from ln1 to ln2


1
Expert's answer
2021-06-15T04:25:30-0400

ln1ln249x2xdx\int_{ln1}^{ln2} {\frac{\sqrt{49-x²}}{x}}dx

Let x = 7sinθ\theta

dx = 7cosθ\theta dθ\theta

So 49x2xdx\int {\frac{\sqrt{49-x²}}{x}}dx =

4949sin2θ7sinθ7cosθdθ\int {\frac{\sqrt{49-49sin²\theta}}{7sin\theta}}7cos{\theta}d\theta

= 7cos2θsinθdθ\int {\frac{7cos²{\theta}}{sin\theta}}d\theta

= 71sin2θsinθdθ7\int {\frac{1-sin²{\theta}}{sin\theta}}d\theta

= 7[cosecθ+sinθ]dθ7\int [{cosec\theta+ sin\theta}]d\theta

Let ln(cosecθ\theta + cotθ\theta) = t

So cosecθcotθcosec2θ)cosecθθ+cotθθ)dθ\frac{-cosec\theta cot\theta-cosec²\theta)}{cosec\thetaθ + cot\thetaθ)}d\theta= dt

=> cosecθ\theta dθ=dt\theta = -dt

= 7dt7sinθdθ-7\int dt -7\int sin\theta d\theta

= -7t + 7cosθ\theta + C

= -7 ln|cosecθ\theta + cotθ\theta | + 7cosθ\theta

= 7 ln| sinθ1+cosθ\frac{sin\theta}{1+cos\theta} | + 7cosθ\theta + C

= ln[2sinθ/2cosθ/22cos2θ/2]+7cosθ+Cln[\frac{2sin\theta/2cos\theta/2}{2cos²\theta/2}]+ 7cos\theta + C

= ln[tan θ/2]+7cosθ+C\theta/2]+ 7cos\theta+C

Now as x--> ln1 , θ\theta --> 0 and as x--> ln2 , θ\theta --> sin -1(ln2/7)

So

ln1ln249x2xdx\int_{ln1}^{ln2} {\frac{\sqrt{49-x²}}{x}}dx = [ln(tanθ/2)+7cosθ]]0sin1(ln2/7)[ln(tan\theta/2)+7cos\theta]]_{0}^{sin^{-1}(ln2/7)}


= [ln(tan(12sin1(ln(2)/7)+[ln(tan(\frac{1}{2}sin^{-1}(ln(2)/7)+

7cos((sin1(ln(2/7)]7cos((sin^{-1}(ln(2/7)]-

[ln(tan(0)+[ln(tan(0)+ 7cos(0)]7cos(0)]

= [ln(tan(12sin1(ln(2)/7)+[ln(tan(\frac{1}{2}sin^{-1}(ln(2)/7)+

7cos((sin1(ln(2/7)]7ln(0)7cos((sin^{-1}(ln(2/7)] -7 - ln(0)

= A finite quantity + ∞ as ln(0) -->-∞

= ∞




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS