∫ln1ln2x49−x2dx
Let x = 7sinθ
dx = 7cosθ dθ
So ∫x49−x2dx =
∫7sinθ49−49sin2θ7cosθdθ
= ∫sinθ7cos2θdθ
= 7∫sinθ1−sin2θdθ
= 7∫[cosecθ+sinθ]dθ
Let ln(cosecθ + cotθ) = t
So cosecθθ+cotθθ)−cosecθcotθ−cosec2θ)dθ= dt
=> cosecθ dθ=−dt
= −7∫dt−7∫sinθdθ
= -7t + 7cosθ + C
= -7 ln|cosecθ + cotθ | + 7cosθ
= 7 ln| 1+cosθsinθ | + 7cosθ + C
= ln[2cos2θ/22sinθ/2cosθ/2]+7cosθ+C
= ln[tan θ/2]+7cosθ+C
Now as x--> ln1 , θ --> 0 and as x--> ln2 , θ --> sin -1(ln2/7)
So
∫ln1ln2x49−x2dx = [ln(tanθ/2)+7cosθ]]0sin−1(ln2/7)
= [ln(tan(21sin−1(ln(2)/7)+
7cos((sin−1(ln(2/7)]−
[ln(tan(0)+ 7cos(0)]
= [ln(tan(21sin−1(ln(2)/7)+
7cos((sin−1(ln(2/7)]−7−ln(0)
= A finite quantity + ∞ as ln(0) -->-∞
= ∞
Comments