∫ l n 1 l n 2 49 − x 2 x d x \int_{ln1}^{ln2} {\frac{\sqrt{49-x²}}{x}}dx ∫ l n 1 l n 2 x 49 − x 2 d x
Let x = 7sinθ \theta θ
dx = 7cosθ \theta θ dθ \theta θ
So ∫ 49 − x 2 x d x \int {\frac{\sqrt{49-x²}}{x}}dx ∫ x 49 − x 2 d x =
∫ 49 − 49 s i n 2 θ 7 s i n θ 7 c o s θ d θ \int {\frac{\sqrt{49-49sin²\theta}}{7sin\theta}}7cos{\theta}d\theta ∫ 7 s in θ 49 − 49 s i n 2 θ 7 cos θ d θ
= ∫ 7 c o s 2 θ s i n θ d θ \int {\frac{7cos²{\theta}}{sin\theta}}d\theta ∫ s in θ 7 co s 2 θ d θ
= 7 ∫ 1 − s i n 2 θ s i n θ d θ 7\int {\frac{1-sin²{\theta}}{sin\theta}}d\theta 7 ∫ s in θ 1 − s i n 2 θ d θ
= 7 ∫ [ c o s e c θ + s i n θ ] d θ 7\int [{cosec\theta+ sin\theta}]d\theta 7 ∫ [ cosec θ + s in θ ] d θ
Let ln(cosecθ \theta θ + cotθ \theta θ ) = t
So − c o s e c θ c o t θ − c o s e c 2 θ ) c o s e c θ θ + c o t θ θ ) d θ \frac{-cosec\theta cot\theta-cosec²\theta)}{cosec\thetaθ + cot\thetaθ)}d\theta cosec θθ + co tθθ ) − cosec θ co tθ − cose c 2 θ ) d θ = dt
=> cosecθ \theta θ dθ = − d t \theta = -dt θ = − d t
= − 7 ∫ d t − 7 ∫ s i n θ d θ -7\int dt -7\int sin\theta d\theta − 7 ∫ d t − 7 ∫ s in θ d θ
= -7t + 7cosθ \theta θ + C
= -7 ln|cosecθ \theta θ + cotθ \theta θ | + 7cosθ \theta θ
= 7 ln| s i n θ 1 + c o s θ \frac{sin\theta}{1+cos\theta} 1 + cos θ s in θ | + 7cosθ \theta θ + C
= l n [ 2 s i n θ / 2 c o s θ / 2 2 c o s 2 θ / 2 ] + 7 c o s θ + C ln[\frac{2sin\theta/2cos\theta/2}{2cos²\theta/2}]+ 7cos\theta + C l n [ 2 co s 2 θ /2 2 s in θ /2 cos θ /2 ] + 7 cos θ + C
= ln[tan θ / 2 ] + 7 c o s θ + C \theta/2]+ 7cos\theta+C θ /2 ] + 7 cos θ + C
Now as x--> ln1 , θ \theta θ --> 0 and as x--> ln2 , θ \theta θ --> sin -1 (ln2/7)
So
∫ l n 1 l n 2 49 − x 2 x d x \int_{ln1}^{ln2} {\frac{\sqrt{49-x²}}{x}}dx ∫ l n 1 l n 2 x 49 − x 2 d x = [ l n ( t a n θ / 2 ) + 7 c o s θ ] ] 0 s i n − 1 ( l n 2 / 7 ) [ln(tan\theta/2)+7cos\theta]]_{0}^{sin^{-1}(ln2/7)} [ l n ( t an θ /2 ) + 7 cos θ ] ] 0 s i n − 1 ( l n 2/7 )
= [ l n ( t a n ( 1 2 s i n − 1 ( l n ( 2 ) / 7 ) + [ln(tan(\frac{1}{2}sin^{-1}(ln(2)/7)+ [ l n ( t an ( 2 1 s i n − 1 ( l n ( 2 ) /7 ) +
7 c o s ( ( s i n − 1 ( l n ( 2 / 7 ) ] − 7cos((sin^{-1}(ln(2/7)]- 7 cos (( s i n − 1 ( l n ( 2/7 )] −
[ l n ( t a n ( 0 ) + [ln(tan(0)+ [ l n ( t an ( 0 ) + 7 c o s ( 0 ) ] 7cos(0)] 7 cos ( 0 )]
= [ l n ( t a n ( 1 2 s i n − 1 ( l n ( 2 ) / 7 ) + [ln(tan(\frac{1}{2}sin^{-1}(ln(2)/7)+ [ l n ( t an ( 2 1 s i n − 1 ( l n ( 2 ) /7 ) +
7 c o s ( ( s i n − 1 ( l n ( 2 / 7 ) ] − 7 − l n ( 0 ) 7cos((sin^{-1}(ln(2/7)] -7 - ln(0) 7 cos (( s i n − 1 ( l n ( 2/7 )] − 7 − l n ( 0 )
= A finite quantity + ∞ as ln(0) -->-∞
= ∞
Comments