3) Prove by induction that for all natural numbers n:
(c) 1/(1)(2) + 1/(2)(3) + · · · +1/(n)(n + 1) = n/(n + 1)
Let "P(n)" be the statement that "\\frac{1}{1\\cdot 2}+\\frac{1}{2\\cdot 3}+\u2026+\\frac{1}{n\\cdot(n+1)}=\\frac{n}{n+1}" .
1) For "n=1" we have that "\\frac{1}{1\\cdot 2}=\\frac{1}{2}=\\frac{1}{1+1}" . So, "P(1)" is true.
2) Suppose that "P(k)" holds, that is, "\\frac{1}{1\\cdot 2}+\\frac{1}{2\\cdot 3}+\u2026+\\frac{1}{k\\cdot(k+1)}=\\frac{k}{k+1}" .
"\\frac{1}{1\\cdot 2}+\\frac{1}{2\\cdot 3}+\u2026+\\frac{1}{k\\cdot(k+1)}+\\frac{1}{(k+1)(k+2)}=\\frac{k}{k+1}+\\frac{1}{(k+1)(k+2)}=\\frac{k(k+2)+1}{(k+1)(k+2)}=\\frac{k^2+2k+1}{(k+1)(k+2)}=\\frac{(k+1)^2}{(k+1)(k+2)}=\\frac{k+1}{k+2}"
We have that "\\frac{1}{1\\cdot 2}+\\frac{1}{2\\cdot 3}+\u2026+\\frac{1}{(k+1)\\cdot(k+2)}=\\frac{k+1}{(k+1)+1}" .
Therefore, "P(k+1)" holds.
By the Principle of Mathematical Induction, for all "n\\in\\mathbb{N}:\\" "\\frac{1}{1\\cdot 2}+\\frac{1}{2\\cdot 3}+\u2026+\\frac{1}{n\\cdot(n+1)}=\\frac{n}{n+1}"
Comments
Leave a comment