Question #198619

3) Prove by induction that for all natural numbers n:


(c) 1/(1)(2) + 1/(2)(3) + · · · +1/(n)(n + 1) = n/(n + 1)



1
Expert's answer
2022-01-10T15:13:25-0500

Let P(n)P(n) be the statement that 112+123++1n(n+1)=nn+1\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+…+\frac{1}{n\cdot(n+1)}=\frac{n}{n+1} .


1) For n=1n=1 we have that 112=12=11+1\frac{1}{1\cdot 2}=\frac{1}{2}=\frac{1}{1+1} . So, P(1)P(1) is true.


2) Suppose that P(k)P(k) holds, that is, 112+123++1k(k+1)=kk+1\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+…+\frac{1}{k\cdot(k+1)}=\frac{k}{k+1} .


112+123++1k(k+1)+1(k+1)(k+2)=kk+1+1(k+1)(k+2)=k(k+2)+1(k+1)(k+2)=k2+2k+1(k+1)(k+2)=(k+1)2(k+1)(k+2)=k+1k+2\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+…+\frac{1}{k\cdot(k+1)}+\frac{1}{(k+1)(k+2)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k^2+2k+1}{(k+1)(k+2)}=\frac{(k+1)^2}{(k+1)(k+2)}=\frac{k+1}{k+2}


We have that 112+123++1(k+1)(k+2)=k+1(k+1)+1\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+…+\frac{1}{(k+1)\cdot(k+2)}=\frac{k+1}{(k+1)+1} .


Therefore, P(k+1)P(k+1) holds.


By the Principle of Mathematical Induction, for all n\in\mathbb{N}:\ 112+123++1n(n+1)=nn+1\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+…+\frac{1}{n\cdot(n+1)}=\frac{n}{n+1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS