Question #198423

f(x) =lin(x+linx)


1
Expert's answer
2021-05-26T03:29:34-0400

Given,f(x)=ln(x+lnx)Given,\\f(x)=ln(x+lnx)


and we know that ddxlnx=1x\dfrac{d}{dx}lnx=\dfrac{1}{x}


So,

f(x)=ddxln(x+lnx) f(x)=1(x+lnx)ddx[x+lnx]=1(1+lnx)[1+1x]=x+1x(1+lnx)f'(x)=\dfrac{d}{dx}ln(x+lnx)\\\ \\f'(x)=\dfrac{1}{(x+lnx)}\dfrac{d}{dx}[x+lnx]=\dfrac{1}{(1+lnx)}\cdot[1+\dfrac{1}{x}]=\dfrac{x+1}{x(1+lnx)}


Hence, f(x)=x+1x(1+lnx)\boxed{f'(x)=\dfrac{x+1}{x\cdot(1+lnx)}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS