indicate the function of f(x) below in fourier series
"0,-1<x<0"
"f(x)=" {
"1,0<x<3"
"T=4"
"=\\dfrac{1}{4}[x]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}=\\dfrac{3}{4}"
"a_n=\\dfrac{1}{4}\\displaystyle\\int_{-1}^{3}f(x)\\cos(\\dfrac{n\\pi x}{2})dt=\\dfrac{1}{4}\\displaystyle\\int_{0}^{3}\\cos(\\dfrac{n\\pi x}{2})dx"
"=\\dfrac{1}{2n\\pi}\\big[\\sin(\\dfrac{n\\pi x}{2})\\big]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}=\\dfrac{1}{2n\\pi}\\sin\\big(\\dfrac{3n\\pi }{2}\\big)"
"n=1, a_{1}=-\\dfrac{1}{2(1)\\pi}"
"n=2, a_{2}=0"
"n=3, a_{3}=\\dfrac{1}{2(3)\\pi}"
"..."
"=-\\dfrac{1}{2n\\pi}\\big[\\cos(\\dfrac{n\\pi x}{2})\\big]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}=\\dfrac{1}{2n\\pi}\\big(1-\\cos\\big(\\dfrac{3n\\pi }{2}\\big)\\big)"
"n=1, b_{1}=\\dfrac{1}{2(1)\\pi}"
"n=2, b_{2}=\\dfrac{2}{2(2)\\pi}"
"n=3, b_{3}=\\dfrac{1}{2(3)\\pi}"
"n=4, b_{4}=0"
"n=5,b_{5}=\\dfrac{1}{2(5)\\pi}"
"b_{6}=\\dfrac{2}{2(6)\\pi}"
"..."
"b_{4m+2}=\\dfrac{2}{2(4m+2)\\pi}, m=0,1,2,.."
"+\\displaystyle\\sum_{k=0}^{\\infin}\\dfrac{1}{2(2k+1)\\pi}\\sin(\\dfrac{(2k+1)\\pi x}{2})"
Comments
Leave a comment