Question #198254

Area of Surface of Revolution

1. 9𝑦 = 𝑥^2 , 0 ≤ 𝑥 ≤ 2 ; x-axis

2. 𝑦 = 𝑙𝑛(𝑥^2 − 1) , 2 ≤ 𝑥 ≤ 3 ; y-axis

3. 𝑦 = 3^√𝑥 , 0 ≤ 𝑥 ≤ 1 ; y-axis

4. 𝑦 = √9 − 𝑥^2 , −2 ≤ 𝑥 ≤ 2 ; x-axis


1
Expert's answer
2021-05-25T18:18:13-0400

1. 9𝑦 = 𝑥2 , 0 ≤ 𝑥 ≤ 2 ; x-axis ..............Equation(1)


Area of the surface is given by


A = \int 02 2 π*\pi * y 1+(dydx)2\sqrt{1 + (\dfrac{dy}{dx})^2} dx



Differentiating Equation(1) with respect to x, we have


dydx\dfrac{dy}{dx} = 2x / 9


So, area is


A = \int 02 2π*\pi * x29\dfrac{x^2}{9} 1+4x281\sqrt{1 + \dfrac{4x^2}{81}} dx ........................Equation(2)



A = 481\dfrac{4}{81} π\pi \int 02 x2x2+814\sqrt{x^2 + \dfrac{81}{4}} dx


Let x = 92tanθ\dfrac{9}{2}\tan\theta


dx = (9/2) sec2 θ\theta dθ\theta


A = 481\dfrac{4}{81} π\pi \int 0 ϕ\phi 814tan2θ\dfrac{81}{4} tan^2\theta 92secθ\dfrac{9}{2}\sec\theta (9/2) sec2 θ\theta dθ\theta ..............[ ϕ\phi = arctan(4/9)]


A = π\pi \int 0 ϕ\phi  tan2θ\ tan^2\theta 92secθ\dfrac{9}{2}\sec\theta 92\dfrac{9}{2} sec2 θ\theta dθ\theta


A = 81π4\dfrac{81\pi}{4} \int0 ϕ\phi tan2θsec3θtan^2\theta sec^3\theta dθ\theta


On solving the above integral we get


A = 2.43 square units.




2. 𝑦 = 𝑙𝑛(𝑥^2 − 1) , 2 ≤ 𝑥 ≤ 3 ; y-axis ...............Equation(2)


x varies from 2 to 3

So, y varies from ln 3 to ln 8


Area of the surface is given by,


A = \int ln 3 ln 8 2 π*\pi * x 1+(dxdy)2\sqrt{1 + (\dfrac{dx}{dy})^2} dy


Differentiating Equation (2) with respect to y we have


dxdy=ey2ey+1\dfrac{dx}{dy} = \dfrac{e^y}{2\sqrt{e^y + 1}}


A = \int ln 3 ln 8 2 π*\pi * ey+1\sqrt{e^y + 1} * ey+12ey+1\dfrac{e^y + 1}{2\sqrt{e^y + 1}} dy


A = \int ln 3 ln 8 π*\pi (ey + 1 )dy


A = π\pi [(ey + y ] ln 3 ln8


A = 18.78 square units.




3. 𝑦 = 3^√𝑥 , 0 ≤ 𝑥 ≤ 1 ; y-axis ................Equation(3)


x = y3

dx/dy = 3y2


The area is given as


A = \int 0 1 2 π*\pi * x 1+(dxdy)2\sqrt{1 + (\dfrac{dx}{dy})^2} dy

A = \int 0 1 2 π\pi y3 1+9y4\sqrt{1 + 9y^4} dy


Let 1 + 9y4 = t

36 y3 dy = dt


A = \int 1 10 2 π\pi t36\dfrac{\sqrt{t}}{36} dt


A = 2π3623\dfrac{2\pi}{36} * \dfrac{2}{3} \int 1 10 [ t1.5 ]1 10


A = 3.561 square units.





4. 𝑦 = √9 − 𝑥^2 , −2 ≤ 𝑥 ≤ 2 ; x-axis ...........................Equation(4)


Area of the surface is given by


A = \int -2 2 2 π*\pi * y 1+(dydx)2\sqrt{1 + (\dfrac{dy}{dx})^2} dx



Differentiating Equation(1) with respect to x, we have


dydx\dfrac{dy}{dx} ​= x9x2\dfrac{- x}{\sqrt{9 -x^2}}


So, area is



A = \int -2 2 2 π*\pi * 9x239x2\sqrt{9-x^2} * \dfrac{3}{\sqrt{9 - x^2}} dx


A = \int -2 2 6π\pi dx


A = 24 π\pi square units


A = 75.36 square units.






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS