Determine the derivatives of the following functions:
a.f(x)=In(x+Inx)
b.g(x)=In√x-1÷x^4+1
C.h(x)=√xe^x^2-x(x+1)^2/3
d.y(x)=(sinx)Inx
Determine the derivatives of the following inverse trigonometric functions:
a.f(x)=tan^-1√x
b.y(x)=In(x^2cot^-1x/√x-1)
c.g(x)=sin^-1(3x)+cos^-1(x/2)
d.h(x)=tan-1(x-√x^2+1)
"I.\\newline\na.\\newline\nf(x)=In(x+Inx)\\newline\nf'=\\frac{1}{x+lnx}(1+\\frac{1}{x})\\newline\nb.\\newline\ng=\\frac{ln\\sqrt{x-1}}{x^4+1}\\newline\ng'=\\frac{(x^2+1)(\\frac{1}{\\sqrt{x-1}})(\\frac{1}{2\\sqrt{x-1}})-(ln\\sqrt{x-1})(2x)}{(x^2+1)^2}\\newline\n=\\frac{x^2+1-4x(x-1)ln\\sqrt{x-1}}{2(x-1)(x^2+1)^2}\n\\newline\nc.\\newline\nh(x)=\\sqrt{xe^{x^2}-x(x+1)^{\\frac{2}{3}}}\\newline\nh'=\\frac{1}{\\sqrt{xe^{x^2}-x(x+1)^{\\frac{2}{3}}}}(xe^{x^2}(2x)+e^{x^2}-x(\\frac{2}{3}(x+1)^{\\frac{-1}{3}})-(x+1)^{\\frac{2}{3}})\\newline\n=\\frac{1}{\\sqrt{xe^{x^2}-x(x+1)^{\\frac{2}{3}}}}(e^{x^2}(2x^2+1)-\\frac{2}{3}x(x+1)^{\\frac{-1}{3}})-(x+1)^{\\frac{2}{3}})\\newline\nd.\\newline\ny(x)=(sinx)lnx\\newline\ny'=sinx(\\frac{1}{x})+lnx(cosx)\\newline\nII.\\newline\na.\\newline\nf=tan^{-1}\\sqrt{x}\\newline\nf'=\\frac{1}{1+(\\sqrt{x})^2}\\frac{1}{2\\sqrt{x}}\\newline\n=\\frac{1}{2(1+x)\\sqrt{x}}\\newline\nb.\\newline\ny(x)=In(x^2cot^{-1}(\\frac{x}{\\sqrt{x-1}}))\\newline\ny'=\\frac{1}{x^2cot^{-1}(\\frac{x}{\\sqrt{x-1}})}.(x^2(\\frac{-1}{1+(\\frac{x}{\\sqrt{x-1}})^2})+cot^{-1}(\\frac{x}{\\sqrt{x-1}})(2x))\\newline\n=\\frac{1}{x^2cot^{-1}(\\frac{x}{\\sqrt{x-1}})}.(\\frac{-x^2}{x^2+x+1}+2xcot^{-1}(\\frac{x}{\\sqrt{x-1}}))\n\\newline\nc.\\newline\ng(x)=sin^{-1}(3x)+cos^{-1}(\\frac{x}{2})\\newline\ng'=\\frac{1}{\\sqrt{1-(3x)^2}}(3)+\\frac{-1}{\\sqrt{1-(\\frac{x}{2})}}\\frac{1}{2}\\newline\n=\\frac{3}{\\sqrt{1-9x^2}}-\\frac{1}{\\sqrt{4-2x}}\\newline\nd.\\newline\nh(x)=tan^{-1}(x-\\sqrt{x^2+1})\\newline\nh'=\\frac{1}{1+(x-\\sqrt{x^2+1})^2}.(1-\\frac{1}{2\\sqrt{x^2+1}}(2x)\\newline\n=\\frac{1}{1+(x-\\sqrt{x^2+1})^2}.(\\frac{\\sqrt{x^2+1}-x}{\\sqrt{x^2+1}})"
Comments
Leave a comment