At any point of the path x=3cosâ¡t,y=3sinâ¡t,z=4t, what is the Normal vector
"\\vec r\\ '(t)=\u27e8-3\\sin t,3\\cos t, 4 \u27e9"
"||\\vec r\\ '(t)||=\\sqrt{(-3\\sin t)^2+(-3\\cos t)^2+(4)^2}=5"
"\\vec T(t)=\\dfrac{\\vec r\\ '(t)}{||\\vec r\\ '(t)||}=\u27e8-\\dfrac{3}{5}\\sin t,\\dfrac{3}{5}\\cos t, \\dfrac{4}{5} \u27e9"
"\\vec T\\ '(t)=\u27e8-\\dfrac{3}{5}\\cos t,-\\dfrac{3}{5}\\sin t, 0 \u27e9"
"||\\vec T\\ '(t)||=\\sqrt{(-\\dfrac{3}{5}\\cos t)^2+(-\\dfrac{3}{5}\\sin t)^2+(0)^2}=\\dfrac{3}{5}"
"\\vec N(t)=\\dfrac{\\vec T\\ '(t)}{||\\vec T\\ '(t)||}=\u27e8-\\cos t,-\\sin t, 0 \u27e9"
Comments
Leave a comment