Verify Green’s theorem in the plane for $ (xy + Sy?)dx + 3xdy,
where c is the closed curve of the region bounded by y = x and y = x?.
Green’s theorem:
"\\oint_CPdx+Qdy=\\iint_D(Q_x-P_y)dA"
We have:
"P=xy+y,Q=3x"
Then:
"Q_x=3,P_y=x+1"
"\\oint_C(xy+y)dx+3xdy=\\int^1_0(2-x)dx\\int^{1-x}_xdy=\\int^1_0(2-x)(1-2x)dx="
"=(2x-5x^2\/2+2x^3\/3)|^1_0=2-5\/2+2\/3=1\/6"
"\\oint_C(xy+y)dx+3xdy=\\int_1^{0.5}[(x(1-x)+1-x)dx+3xd(1-x)]+"
"+\\int_{0.5}^{0}[(x^2+x)dx+3xdx]=\\intop^{0.5}_1(1-x^2-3x)dx+\\int^0_{0.5}(x^2+4x)dx="
"=(x-x^3\/3-3x^2\/2)|^{0.5}_1+(x^3\/3+2x^2)|^0_{0.5}="
"=0.25-0.125\/3-0.75\/2-1+1\/3+1.5-0.125\/3-0.5=1\/4-1\/12-3\/8+1\/3=1\/6"
We have the same results, so Green’s theorem is verified.
Comments
Leave a comment