Green’s theorem:
∮CPdx+Qdy=∬D(Qx−Py)dA
We have:
P=xy+y,Q=3x
Then:
Qx=3,Py=x+1
∮C(xy+y)dx+3xdy=∫01(2−x)dx∫x1−xdy=∫01(2−x)(1−2x)dx=
=(2x−5x2/2+2x3/3)∣01=2−5/2+2/3=1/6
∮C(xy+y)dx+3xdy=∫10.5[(x(1−x)+1−x)dx+3xd(1−x)]+
+∫0.50[(x2+x)dx+3xdx]=∫10.5(1−x2−3x)dx+∫0.50(x2+4x)dx=
=(x−x3/3−3x2/2)∣10.5+(x3/3+2x2)∣0.50=
=0.25−0.125/3−0.75/2−1+1/3+1.5−0.125/3−0.5=1/4−1/12−3/8+1/3=1/6
We have the same results, so Green’s theorem is verified.
Comments