Find the angle between the curves y^2=ax and ay^2=x^3 (a>0), at the points of intersection other than origin.
"\\text{Given, the two curves} \ny ^2 = ax \\space and \\space\nay^2 = x ^3.\\newline\n\\text{Equating the both equations}\ny ^2 = ax \\space\nand \\space\nay^2 = x ^3 \\text{to get the integrating point,}\\newline\nax = \\frac{x^3}{a}\\newline\nx ^2 = a ^2\\newline\nx = a\\newline\n \\text{Then,}\\newline\ny = (a^2) ^{\\frac{1}{2 }}= a.\\newline \n\\text{The integrating point is }\n \\space\n(a,a).\\newline \n\\text{Differentiate both curves w.r.t} \n \\space\nx.\\newline \n\\text{First curve}\\newline \ny ^2 = ax\\newline\n2y \\frac{dy}{dx}= a\\newline\n \\frac{dy}{dx}= \\frac{a}{2y}\\newline \\text{Then, slope of the first curve at }\n \\space\n(a,a) \\space\nis \\space\n \\frac{1}{2}i.e.,m1 =\\frac{1}{2}.\\newline\n \\text{Now, second curve,}\\newline\nay^2 = x ^3\\newline\n2ay\\frac{dy}{dx}=3x^2\\newline\n \\frac{dy}{dx}= \\frac{3}{2}\\newline \\text{Therefore, } \\space\nm2=\\frac{3}{2}.\\newline\n \\text{Then, the angle between the curves given by,}\\newline\ntan\\theta= | \\frac{m1 \u2013 m2}{1 + m1*m2} |\\newline\n = | \\frac{\\frac{1}{2} \u2013 \\frac{3}{2}\n}{1 + \\frac{1}{2}\u00d7\\frac{3}{2}}|\\newline\n = |\\frac{-4}{7}| \\newline\n=\\frac{4}{7}\\newline\n\\theta=tan^{-1}(\\frac{4}{7})\\newline\n=29.7\u00b0\\newline\n \\text{Thus, angle is} \\space\n 29.7\u00b0."
Comments
Leave a comment