Answer to Question #197818 in Calculus for Rocky Valmores

Question #197818

Find the total work done in moving a particle in a force field given by 𝐹 = 3𝑥𝑦𝑖 − 5𝑧𝑗 + 10𝑥𝑘 along the curve x = 𝑡2 + 1, 𝑦 = 2𝑡2 , 𝑧 = 𝑡3 𝑓𝑟𝑜𝑚 𝑡 = 1 𝑡𝑜 𝑡 = 2.


1
Expert's answer
2021-05-28T10:23:29-0400

F.dr=(3xyi52j+10xk)(dxi+dyi+dzk)          =3xydx52dy+10xdz           =3(t2+1)(2t2)(2tdt)5(t3)(4tdt)+10(t2+1)(3t2dt)           =(12t5+12t320t4+30t4+30t2)dt          =(12t5+10t4+12t3+30t2)dt\begin{array}{l} {\overline{F}.\overline{dr}=(3xyi-52j+10x\overline{k})(dxi+dyi+dzk)} \\ {\, \, \, \, \, \, \, \, \, \, =3xydx-52dy+10xdz} \\ {\, \, \, \, \, \, \, \, \, \, \, =\, 3(t^{2} +1)(2t^{2} )(2tdt)-5(t^{3} )(4tdt)+10(t^{2} +1)(3t^{2} dt)} \\ {\, \, \, \, \, \, \, \, \, \, \, =(12t^{5} +12t^{3} -20t^{4} +30t^{4} +30t^{2} )dt} \\ {\, \, \, \, \, \, \, \, \, \, =(12t^{5} +10t^{4} +12t^{3} +30t^{2} )dt} \end{array} Work  Done=Cf.dr=12(12t5+10t4+12t3+30t2)dt                           =[12t65+10t55+12t44+30t33]12         =[2t6+2t5+3t4+103]12          =[2(2)6+2(2)5+3(2)4+10(2)3][2+2+3+10]\begin{array}{l} {Work\, \, Done=\int _{C}f.\overline{dr} =\int _{1}^{2}(12t^{5} +10t^{4} +12t^{3} +30t^{2} )dt } \\ {\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\, \left[\frac{12t^{6} }{5} +\frac{10t^{5} }{5} +\frac{12t^{4} }{4} +\frac{30t^{3} }{3} \right]_{1}^{2} } \\ {\qquad \, \, \, \, \, \, \, \, \, =\left[2t^{6} +2t^{5} +3t^{4} +10^{3} \right]_{1}^{2} } \\ {\qquad \, \, \, \, \, \, \, \, \, \, =\, \left[2(2)^{6} +2(2)^{5} +3(2)^{4} +10(2)^{3} \right]-\left[2+2+3+10\right]} \end{array} =303= 303





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment