Find the total work done in moving a particle in a force field given by πΉ = 3π₯π¦π β 5π§π + 10π₯π along the curve x = π‘2 + 1, π¦ = 2π‘2 , π§ = π‘3 ππππ π‘ = 1 π‘π π‘ = 2.
"\\begin{array}{l} {\\overline{F}.\\overline{dr}=(3xyi-52j+10x\\overline{k})(dxi+dyi+dzk)} \\\\ {\\, \\, \\, \\, \\, \\, \\, \\, \\, \\, =3xydx-52dy+10xdz} \\\\ {\\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, =\\, 3(t^{2} +1)(2t^{2} )(2tdt)-5(t^{3} )(4tdt)+10(t^{2} +1)(3t^{2} dt)} \\\\ {\\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, =(12t^{5} +12t^{3} -20t^{4} +30t^{4} +30t^{2} )dt} \\\\ {\\, \\, \\, \\, \\, \\, \\, \\, \\, \\, =(12t^{5} +10t^{4} +12t^{3} +30t^{2} )dt} \\end{array}" "\\begin{array}{l} {Work\\, \\, Done=\\int _{C}f.\\overline{dr} =\\int _{1}^{2}(12t^{5} +10t^{4} +12t^{3} +30t^{2} )dt } \\\\ {\\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, =\\, \\left[\\frac{12t^{6} }{5} +\\frac{10t^{5} }{5} +\\frac{12t^{4} }{4} +\\frac{30t^{3} }{3} \\right]_{1}^{2} } \\\\ {\\qquad \\, \\, \\, \\, \\, \\, \\, \\, \\, =\\left[2t^{6} +2t^{5} +3t^{4} +10^{3} \\right]_{1}^{2} } \\\\ {\\qquad \\, \\, \\, \\, \\, \\, \\, \\, \\, \\, =\\, \\left[2(2)^{6} +2(2)^{5} +3(2)^{4} +10(2)^{3} \\right]-\\left[2+2+3+10\\right]} \\end{array}" "= 303"
Comments
Leave a comment