Find the total work done in moving a particle in a force field given by πΉ = 3π₯π¦π β 5π§π + 10π₯π along the curve x = π‘ 2 + 1, π¦ = 2π‘2 , π§ = π‘ 3 ππππ π‘ = 1 π‘π π‘ = 2.
The total work done can be found as the integral of the scalar product between the force vector F and a certain displacement trajectory vector ds. We use the definition for the curve r as well to proceed:
"\\vec{r} = \\begin{pmatrix}\nt^2+1, &2t^2, & t^3\n\\end{pmatrix}" (between t=1 and t=2) which gives"\\frac{d\\vec{r}}{dt} = \\begin{pmatrix}\n2t, &4t, & 3t^2\n\\end{pmatrix}"
"\\vec{F} = \\begin{pmatrix}\n3xy, &-5z, & 10x\n\\end{pmatrix}" which we have to substitute in terms of the 't' variable:
"\\vec{F} =\\begin{pmatrix}\n3(t^2+1)(2t^2), &-5(t^3), & 10(t^2+1)\n\\end{pmatrix}"
"\\vec{F} = \\begin{pmatrix}\n6t^4+6t^2, &-5t^3, & 10+10t^2\n\\end{pmatrix}"
Then we substitute and calculate the total work:
"W=\\int_{C}^{} \\vec{F}\\cdot d\\vec{s} =\\int_{C}^{} \\vec{F}(\\frac{\\mathrm{d} \\vec{r}}{\\mathrm{d} t}) dt"
"W = \\int_{1}^{2}\n\n\\begin{pmatrix}\n6t^4+6t^2, &-5t^3, & 10+10t^2\n\\end{pmatrix}\n\n\\cdot\n\n\\begin{pmatrix}\n2t, &4t, & 3t^2\n\\end{pmatrix} \ndt"
"=\\int_{1}^{2} (12t^{5}+12t^{3}-20t^{4}+30t^{2}+30t^{4})dt"
"W=\\int_{1}^{2} (12t^{5}+10t^{4}+12t^{3}+30t^{2})dt=\\left [ 2t^{6}+2t^{5} +3t^{4}+10t^{3}\\right ]_{1}^{2}= (2(2^6)+2(2^5)+3(2^4)+10(2^3))-(2(1^6)+2(1^5)+3(1^4)+10(1^3))=(128+64+48+80)-(2+2)+3+10)"
"W = (128+64+48+80)-(2+2+3+10) =320-17"
"W = 303\\,u"
In conclusion, the total work done is 303 units.
Reference:
Comments
Leave a comment