f(x)=cos√sin(tanπx)
f(x)=cossin(tanπx)f(x)=cos\sqrt{sin(tan\pi x)}f(x)=cossin(tanπx)
Using chain rule of differentiation
d[f(x)]dx=−sinsin(tanπx)×12sin(tanπx)×cos(tanπx)×sec(2πx)×π\dfrac{d[f(x)]}{dx}=-sin\sqrt{sin(tan\pi x)}\times\dfrac{1}{2\sqrt{sin(tan\pi x)}}\times cos(tan\pi x)\times sec(2\pi x)\times \pidxd[f(x)]=−sinsin(tanπx)×2sin(tanπx)1×cos(tanπx)×sec(2πx)×π
f′(x)=−πsinsin(tanπx) cos(tanπx) sec(2πx)2sin(tan(πx))f'(x)=-\dfrac{\pi \sin\sqrt{\sin(\tan\pi x)}\space \cos(\tan\pi x)\space \sec(2\pi x) }{2\sqrt{\sin(\tan(\pi x))}}f′(x)=−2sin(tan(πx))πsinsin(tanπx) cos(tanπx) sec(2πx)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments